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Abstract
Global climatemodels are good tools for simulating transnational and interregional transport of
pollutants such as PM2.5, which is of growing interest and importance, for example in human health
and socio-economic development studies. However, reliable estimates of PM2.5 are very challenging
for such relatively coarse and simplifiedmodels, and even state of the artmodels fare poorly in
matching satellite observations inmany highly polluted, and some almost pristine environments. This
work describes a novel bias correctionmethod based onmultiple linear regression (MLR)modelling.
The target datawe aim for is global satellite-based data and the PM2.5 precursors simulated by the
Community Earth SystemModel Version 1.2.2. The statisticalmethod greatly reduced the simulation
biases of PM2.5 worldwide comparedwith satellite-derived PM2.5, especially in highly-polluted
regions, such as northernChina, the Indo-Gangetic plains, theDemocratic Republic of Congo and
northwestern Brazil. Root-mean-square differences (RMSD) between continental-averaged observa-
tions and simulations are reduced from75% to 9%. The ensemble RMSD for 13 countries exemplified
here is reduced from116% to 3%.One virtue of theMLRmethod is that details of the classification of
internalmixedmodes of each aerosol and their spatial differences are not required. TheMLR
coefficients are designed to be highly aerosol- and country-dependent, so they provide new
perspectives of relative importance of each aerosol to local PM2.5 and offer clues on observational and
simulation biases. The bias-correctionmethod is easily applied for air pollutants simulated by global
climatemodels due to its low computational cost.

1. Introduction

Regional climatemodels (RCMs), such as theweather research and forecastingmodel (WRF), are commonly
used to simulatefine particulatematter and assess local air quality. RCMshave higher spatial resolution than
global climatemodels (GCMs) and tailored representations of the regional or urban contexts (Bai et al 2021,
Bran and Srivastava 2017,He et al 2018, Yang et al 2020). However, RCMs are not suitable for the simulation of
long-range transport of air pollutants over larger regions, such as a hemispheric domain. In these cases, GCMs
aremore suitable, and the accurate simulation offine particulatematter inGCMs becomes a concern.

TheCommunity Earth SystemModel (CESM,Hurrell et al 2013) is a state-of-the-art GCM, providing
computer simulations of the Earth’s past, present, and future climate states. TheCESMhas been used in a
number of studies to simulate PM2.5. Recent studies such as Banks et al (2022) andXu and Lamarque (2018) have
simulated aerosol concentrations usingCESMwith theModal AerosolModule, using a combination of the fine
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modes (Aitken andAccumulationmodes) as a proxy for surface PM2.5 concentrations. Sulfate, black carbon,
primary organics, and secondary organics were included, but the fine components of sea salt and dust aerosols
were not considered. Comparedwith the satellite-derived PM2.5 (vanDonkelaar 2018), themodeled PM2.5

concentrations in Banks et al (2022)were underestimated bymore than 10 μg m−3 over northern India,
southernChina, as well asmost Southeast Asian and European countries, while concentrations were
overestimated bymore than 10 μg m−3 over central SouthAmerica. Possible factors responsible for simulation
biases are uncertainties in emission inventories,meteorological input, and over-simplified chemistry or aerosol
processes (Hur et al 2021, Gao et al 2011, Tilmes et al 2015, Liu 2012). Improving PM2.5 simulationswithmore
accurate emission inventories or better processmodelling are ongoing long-term efforts.Meanwhile, carefully
chosen bias-correctionmethods are a rapid and convenient way for adjustingGCMmodel output for use in
downstream impactmodelling.

Some bias correctionmethods have been effectively applied to reduce the PM2.5 bias in air qualitymodels,
such as the simple runningmean average, Kalman-Filtering (Djalalova et al 2010), the analog ensemblemethod
(Huang et al 2017), the Bayesianmodel (McMillan et al 2009) and a cluster-analysis-based synoptic weather
pattern (WP) classification (Cheng et al 2021). A recentmachine learning-based correctionmethod found great
improvements in correcting the PM2.5 biases over China (Liu andXing 2022). The general applicability of all
thesemethods on global domains has not yet been tested.

In this work, we use correlation analysis and amultiple linear regression (MLR)model to correct the bias
betweenCESM-simulated PM2.5 and the satellite-based data (vanDonkelaar et al 2021). The details of the bias-
correctionmethod and its global utility are discussed here. Section 2 describes the data needed andmethodology
used, section 3 shows the results at grid point level across the globe, and section 4 discusses limitations and
potential of the approach.

2.Method

2.1.Model
TheCommunity Earth SystemModel version 1.2.2was used to simulate global annualmean PM2.5

concentrations. The ‘B_2000_CAM5_CN’ component set was used, including Community AtmosphereModel
5 (CAM5) (Neale et al 2010), Parallel Ocean Program version 2 (POP2), Community Land SurfaceModel (CLM)
version 4.0, the Los Alamos sea icemodel (CICE) version 4, all coupled together using theCESMcoupler CPL7.
The horizontal resolution of CAM5was 0.9°× 1.25° latitude-longitude. TheModal AerosolModulewith three
modes (MAM3)was used to simulate the aerosol size distribution and themixing between aerosol components,
and the complex aerosol processes and physical, chemical and optical properties of aerosols are treated in a
physically-basedmode (Liu 2012). Black carbon (BC), primary organicmatter (POM), sulfate aerosol, secondary
organic aerosol (SOA), dust and sea salt aerosols were simulated in three internallymixedmodes byMAM3,
namely AitkenMode (with dry diameter between 0.015–0.053 mm), AccumulationMode (0.058–0.27 mm) and
CoarseMode (0.80–3.65 mm). Input emissionswere based onAerosol Comparisons betweenObservations and
Models (Textor et al 2006).

To simulate themodern PM2.5 concentrations worldwide, the default ‘B_2000_CAM5_CN’ experiment
with greenhouse gas (GHG) levels and aerosol emissions of the year 2000was adjusted to that of the year 2020.
The atmospheric GHGconcentrations were changed to that of the year 2020 fromNOAA (available at https://
gml.noaa.gov/ccgg/trends/). The aerosol emissionswere updated to the year 2020 values from the
Representative Concentration Pathway 6.0 (RCP6.0) scenario experiment inCESM.The experiment was run for
300 years to allow the simulation to reach the climate equilibrium state of 2020, and the last 100 years were used
for the following analysis.

2.2. PM2.5 concentrations
Since there is no straightforward output of PM2.5 concentrations inCESM1.2.2, we considered annualmean
aerosol concentrations with diameters smaller than 2.5 μm (Aitken, Accumulation and part of Coarsemode) in
MAM3 as a proxy for simulated surface PM2.5. Integrating theCoarsemode log-normal spectrumup to 2.5
microns suggests that around 36%of total coarsemode can be considered PM2.5 (Qin 2003). All of the simulated
black carbon (BC) and primary organicmatter (POM)were PM2.5, since they only have the Accumulationmode.
All of the SOAwas PM2.5, since it only has Aitken andAccumulationmodes. Sulfate and sea salt (SS) aerosols
have all threemodes, while dust aerosol has Accumulation andCoarsemodes. Accordingly, 36%of the coarse
mode of sulfate, sea salt and dust were taken as PM2.5. Equation (1) summarises the calculation described above.
Thismethod is similar to Banks et al (2022) andXu and Lamarque (2018), but additionally includes the
contribution to PM2.5 by sea salt, dust aerosols and theCoarsemode of sulfate.

2

Environ. Res. Commun. 5 (2023) 101001

https://gml.noaa.gov/ccgg/trends/
https://gml.noaa.gov/ccgg/trends/


* * *
= + + + + +

+ + + + + + +

Simulated PM BC POM SOA SOA Sulfate Sulfate

Sulfate SS SS SS dust dust0.36 0.36 0.36 1

m m m m m m

m m m m m m

2.5 1 1 1 2 1 2

3 1 2 3 1 3 ( )

In equation (1) above, the subscripts m m m1, 2and 3 refer to Accumulation, Aitken andCoarsemodes.
The 2000–2019multi-yearmean aerosol concentrations from theModern-Era Retrospective analysis for

Research andApplications version 2 (MERRA-2, GMAO2015)were used as the reference for thefirst step of bias
correction. This data was of 0.5 °× 0.625 ° horizontal resolution. After bias-correction of each aerosol type by
MERRA-2, a satellite-derived PM2.5 with 0.1°× 0.1°horizontal resolution (vanDonkelaar et al 2021) over the
same 2000–2019 periodwas used for a secondary correction for total PM2.5 andmodel validation. This satellite-
derived dataset combines satellite observations, chemical transportmodeling and ground-basedmonitoring.

2.3. Correction process
We selected thirteen countries worldwide (Europe: Germany, Poland, Italy, Asia: China, India, Indonesia,
Oceania: Australia, Africa: Nigeria, Egypt, Democratic Republic of Congo, TheAmericas:Mexico, Brazil, Peru)
with relatively large PM2.5 biases comparedwith the observations (seefigure S1), to test the effectiveness of the
correctionmethod on a global scale. In all the following discussionwe limit ourselves to just these countries as
they span a range of behaviors representative of the global dataset and avoid the need to discuss every individual
country. The results for 6 continents are also shown in table S1. Aflowchart of themultiple-step correction
process is given infigure 1.

The bias correction process is divided into two parts, obtaining the correction parameters and validating the
correctionmodel.We randomly divided theCESM-simulated 100-year annualmean aerosol concentrations
into 5 groups, taking thefirst 4 groups of 80 years to establish the parameters of the bias correctionmodel, and
the last group of 20 years was used to validate the correction effect. The random selectionwas performed five
times, whichwe used for uncertainty in the bias correctionmethod.

The 2000–2019multi-year average aerosol concentrations from theMERRA-2 reanalysis dataset were used
to calibrate theCESM-simulated sulfate, BC, POM, dust and sea salt aerosols (only considering aerosols less than
2.5 μmin diameter, and SOA is not included inMERRA-2). The 0.5 °× 0.625 °horizontal resolution of
MERRA-2was bilinearly interpolated to the 0.9°× 1.25° resolution for comparisonwithCESMoutputs
(figure S2). In general, the spatial distribution of simulated aerosol concentrationsmatchedwell with that of
MERRA-2, except for the distribution biases of sulfate and sea salt in theDemocratic Republic of Congo, and
sulfate in Italy. However, themagnitudes of sulfate, BC andPOMconcentrations were underestimated byCESM

Figure 1. Flowchart of bias correction process of CESM-simulated PM2.5. The process is divided into two parts: (i) establishing bias-
correctionmodel using 80-year simulated aerosols,MERRA-2 reanalysis aerosols over 2000–2019 (GMAO2015) and the satellite-
derived PM2.5 over 2000–2019 (vanDonkelaar et al 2021); (ii) validating the bias-correctionmethod using 20-year simulated aerosols,
the ratio of 80-yearmean simulated aerosols toMERRA-2 and theMLRmodel. The pink boxes are the input data for bias-correction,
the green boxes show the intermediate processing steps, and the blue boxes are the output results.
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inmost regions, particularly in northernChina, northern India and southernNigeria comparedwithMERRA-2
(figures S2.2 and S2.3). In addition, POMconcentrations over Brazil were also underestimated (figure S2.4). The
most plausible reason is that the emission inventory used byMAM3did not capture the high levels of
anthropogenic emissions in regionswhere sulfate, BC and POMwere severely underestimated. As for dust
aerosols, significant overestimation occurred in northwesternChina, Egypt and northernNigeria (figures S2.2
and S2.3), probably due to the overestimation of the effects of deserts. Since the ratio of the simulated 80-year
mean aerosol concentrations to the 2000–2019mean aerosol concentrations ofMERRA-2was fairly uniform
worldwide (figure S2), we corrected the simulated 80-year annualmean aerosols bymultiplying themby the
ratio at every grid point.

TheMERRA-calibrated aerosols (sulfate, BC, POM, dust and sea salt) and SOAneed to be added together
using reasonable weights to be a useful proxy for PM2.5. InMAM3, sulfate is partially in the formofNH4HSO4,
so that fraction of sulfate is already prescribed. So, amultiplication factor for sulfate aerosols is needed since the
species tracer inCESMoutputs is the sulfate ion.Nitrate aerosol is not simulated in theMAMoutput we have,
but it can be important on regional scales, especially in East Asia (Li et al 2015), where it is expected to be
increasingly important in the future due to reductions in sulfur dioxide and increases in nitrogen-oxides
emissions. Dust aerosols span a broad size range from0.058 mm to 3.65 mm (dry particle diameter), and the use
of geometric diameter rather than aerodynamic diameter inMAM3may overestimate the contribution of dust
aerosols to the total PM2.5 (Yang et al 2022). The proportions of aerosols in different size ranges will be affected
by physical and chemical reactions, such as coagulation, and also temperature, humidity and ultraviolet
radiation, whichwill not be perfectly simulated byCESM.Therefore, reasonable weights for each aerosol are
necessary to calibrate the contribution of each aerosol to the total PM2.5 concentrations.

We applymultiple linear regression (MLR) to create statistically reasonable weights for each aerosol. The
target data is the satellite-derived PM2.5 (vanDonkelaar et al 2021) and theMERRA-calibrated 80-year aerosols
are potential explanatory variables.Many aerosols have common sources and arewell-correlated, for example
sulfate, BC and POM inChina and India. So, to reduce collinearity and avoid over-fitting theMLRmodel, we did
a correlation analysis ofMERRA-calibrated aerosols before theMLRprocess (Sheet 1 in Supplementary Excel).
Aerosol components that are correlated better than 0.7 (andwith p< 0.01) over a specific countrywere
combined into a single explanatory variable (see Supplementary Excel) for theMLRmodel for that country. In
practice, the sources ofmost dust and sea salt aerosols are different from sulfate, BC, POMand SOA, and sowe
only considered combinations of sulfate, BC, POMand SOA, keeping dust and sea salt aerosols as independent
variables.We also considered the specific spatial distributions of each aerosol (figure 2) to test or correct the
combination of different aerosols. In our 13-country example dataset wewill discuss exceptions to these general
rules, as here, in the case of Peruwhere POMand SOA are highly correlated (R> 0.9), and although the
correlation coefficients between BC and POMor SOA are 0.67 or 0.51 (p< 0.01), and hence smaller than the
criterion of R> 0.7, the spatial distributions of BC, POMand SOA are quite similar to each other (figure 2). So,
in this case, we combined BC, POMand SOA into a single component for Peru.

The regressionmethodwe use (Matlab: lsqnonneg.m, Lawson&Hanson 1974) is an optimization code
rather than a plain linear regression sincewe specify only positive coefficients for the explanatory variables for
physical consistency. The 100-year CESM-simulated aerosols come from a climate equilibrium experiment for
the year 2020, whichmeans that a grid point actually has one value for a specific aerosol as the rest of the values
are random scattered around that value. So, country-specificMLRmodels were built using 2000–2019 average
satellite-derived PM2.5 (vanDonkelaar et al 2021) as the dependent variable, and theMERRA-calibrated 80-year
average aerosols as explanatory variables, after reducing themwhere possible to account for collinearity as
described above (equation (2)). The number (N) of thewhole grid points in a country (table S2) is the number of
data points in theMLR. According to theOne in TenRule (Harrell et al 1984,Harrell et al 1996, Peduzzi et al
1996), N should be greater than 10 times the number of explanatory variables (minimum is 3 here) to ensure the
reliability and predictive power of the regressionmodel. The constant term  for theMLR formulawas ignored
and the slope coefficients b were required to be larger than zero, and thesewere taken as theweights for each
aerosol. Then, the bias-corrected PM2.5 concentrations can be represented by theweighted sumof the six
aerosols (equation (3)).We also estimated the contributions of theMERRA-calibrated aerosols to the total bias-
corrected PM2.5 concentrations for a specific country as equation (4) (Wang et al 2022).
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Here, yi r( ) is the satellite-derived PM2.5 concentration of grid cell i located in country r.N(r) is the total number
of grid points of country r. xk i r, ( ) is the concentration of component k combined by theMERRA-calibrated
aerosols. m r( ) is the number of components in country r. bk r, is the slope coefficient for component k in country
r.  is the residuals. PM i r2.5, ( ) is the corrected PM2.5 concentration of grid cell i located in country r.
Aerosolg i r, ( ) represents the concentration of Aerosol g corrected byMERRA-2 data. wg r, is the regression
coefficient for aerosol g in country r.Aerosolg r, is the regionalmeanMERRA-calibrated aerosol g for country r,
and Cg r, is its contribution to regionalmean corrected PM2.5 for this country.

To assess the correction effect of PM2.5 worldwide, we used the samemethod for the 13 representative
countries to correct PM2.5 in the six continents (Europe, Asia, Oceania, Africa, NorthAmerica and South
America) but based on continent-specificMLR coefficients (r in equations (2) and (3) indicating a specific
continent in this case).

For validating the correctionmethod, we used the grid point ratios of the simulated 80-year aerosols to
MERRA-2 to correct the remaining 20-year aerosols, and then applied the regression coefficients to obtain the
corrected PM2.5 (equation (3)). The corrected PM2.5 concentrations in the validation data sets are compared
with satellite observations for the 13 representative countries infigure 3, and for thewhole globe infigure S3.

3. Results

The bias-corrected PM2.5 in figures 3 and S3 show similar spatial distributions as the satellite-derived PM2.5, and
reproducedwell the high concentrations in northernChina, the Indo-Gangetic plains, Democratic Republic of
Congo and northwestern Brazil, whichwere severely underestimated before correction (figure S1). However, the
corrected PM2.5 concentrations show a significant underestimation in easternNigeria and an overestimation in
westernNigeria. This is a consequence of the different relations between east andwest for the variables in the

Figure 2.The average ofMERRA-calibrated 80-year annualmean surface aerosol concentrations for different countries worldwide.
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Figure 3.Model verification. Left column: bias-corrected 20-yearmean surface PM2.5 concentrations (the average offive validation
data set selections)with horizontal resolution 0.9°× 1.25°,Middle column: 20-yearmean satellite-derived surface PM2.5 (van
Donkelaar et al 2021)with horizontal resolution 0.1°× 0.1° over 2000–2019. Right column: differences (simulated PM2.5minus
observations). Each row shows the representative countries in Europe, Asia, Africa and theAmericas.
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MLR regression. This can be related to the different pattern of surfacewinds in the country (figure S4b). Despite
this, the correctionmethod significantly reduces the differences between the regionalmean PM2.5

concentrations simulated byCESMand the observed one (vanDonkelaar et al 2021). The bias-corrected PM2.5

concentrations inmost of the 13 representative countries arewithin 5%of observations (table S1), and the 13-
country ensemble RMSD (equation S1) of simulated regionalmean PM2.5 fromobservations at country scale is
reduced from115.8% to 3.3%. The 6-continent RMSDof bias-correctedmean PM2.5 based on continent-
specificMLRmodels from the observations is 9.7% comparedwith 74.7%with no bias correction. This
decreases to 8.6% if we use the 13 representative countries bias-corrected PM2.5 within the continentalmodels
(table S1). So, while country-specificMLRmodels aremore accurate than continental-wideMLRmodels,
differences fromobservations are still lowered by a factor of 7.

TheMLRcoefficients of each aerosol for the 13 countries are shown infigure 4 andprovide information on the
contribution of aerosols to total local PM2.5. In the case of Indonesia, for example, the contribution ofMERRA-
calibrated sulfate, BCanddust aerosols to the total PM2.5wereunderestimated,while that of POM, SOAand sea
salt aerosolswere overestimated. The large coefficient of dust aerosolsmeans that the importance of dust aerosols
to Indonesia’s actual PM2.5 distributionswas highly underestimated.The source of thedust in this casemaybe
attributed to transport from thedeserts ofAustralia towards Indonesia (figure S4a), or seasonal biomass burning
due to frequentfires occurring indegraded forests andpeatlands (Lestari andMauliadi 2009, Siregar et al2022).
The large overestimations of sea salt (with a coefficient of 0.2) in Indonesia,may be related to the simulationbiases
of sea surface temperatures and sea ice,which can affect the distribution of global sea salt aerosols (Jiang et al 2021).

We also estimated the relative importance of different aerosols to total PM2.5 in specific countries. For
Germany, Italy andAustralia, the contributions of sulfate are larger than that of any other aerosols, and the
largest contributions of SOA can be seen in theDemocratic Republic of Congo and the three American
countries. InNigeria and Egypt, dust aerosol contributed largest to local PM2.5. Comparing the spatial
distributions between each aerosol and the bias-corrected PM2.5 (figures 2 and 3), we found that the spatial
distributions of sulfate, SOAor dust aerosol dominated the local PM2.5 distributions for the above countries.
However, for China, India and Indonesia, although dust aerosolsmade the largest overall contribution to total
PM2.5, the country spatial distribution of PM2.5 wasmore similar to that of sulfate, BC, POMor SOA than to dust
aerosols, hencewemay expect that the PM2.5 variance explained by these variables would be greater than by dust.

Figure 4.TheMLR coefficients of each aerosol for the representative countries in Europe, Asia, Africa and theAmericas. The
pentagrams on the bars indicate the contribution of each aerosol to total PM2.5 concentration for a specific country. A value of unity
(dashed line) indicates that theMERRA-calibrated 80-year aerosols are the same as theMLRmodel.Higher coefficients indicate the
MLR contribution of the aerosol to total PM2.5 concentration is underestimated in this country. The absence of bars indicates that this
aerosol was not important for the spatial distributions of PM2.5 in this country. The uncertainty in theMLR coefficients deduced from
the variations between the 5 randomcalibration sets is smaller than 0.01.
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4.Discussion and conclusion

The long-range transport of air pollutants over different countries or even continents is important in the
evaluation of future human health and socio-economic development pathways. Global climatemodels are a
potentially excellent tool to simulate this process and potential impacts (Ran et al 2023). However, global climate
models such as CESMare not good at simulating aerosol andPM2.5 concentrations due to their relatively coarse
resolutions and oversimplified representation of chemical processes comparedwith regional climatemodels.
Thus, correcting the simulation biases in global climatemodels is a legitimate concern. In this work, we
introduced and evaluated amulti-step correctionmethod based on correlation analysis andmultiple linear
regressionmodelling for PM2.5 concentrations simulated by an earth systemmodel. Our results show that the
correctionmethod can considerably improve the simulations of the spatial distributions andmagnitudes of
PM2.5 concentrations worldwide, reducing the root-mean-square differences of simulated PM2.5 at continental
scales by a factor of 7.

Randomizing the calibration and validation datasets shows that the coefficients derived from themodel are
robust. However, coefficients can be changed significantly by the selection of aerosol combinations for theMLR
process. This is a consequence of the over-fitting caused by collinearity in the fitting variables. Additionally,
manual checking of the spatial patternwithin countries is useful to avoid effects such as different climate factors
driving aerosol species across a country (e.g. as we illustrated forNigeria). But even in these cases, theMLRbias
correction still offers improvements over the climatemodel simulations. One benefit of using a simple tool like
theMLRmodel to produce coefficients for each aerosol is that the spatially complex and variable classification of
internalmixedmodes for each aerosol are handled implicitly. These aerosolmodes are greatly affected by
physical and chemical reactions amongst themselves, as well as the atmospheric background conditions.
Furthermore, these conditionswill also change temporally as statesmake efforts to reduce PM2.5 concentrations
in future, decarbonize their economies and alter their energy production balance.

Here we take the number of whole grid points in a country (or continent) as the number of data points in
eachMLRmodel.Most of the 13 representative countries haveN> 10 times the number of independent
variables (the x in equation (2)) in theMLR. For some small countries such as Kuwait, Lebanon and Palestine,
this country-basedmethod has very small N, andmay not provide reliable information about local emission
features.

We choose countries rather than regions having theminimumNgrid points to build theMLRmodel
because countries are themost important administrative areas where the emissions are always related to local
policies and economy. TheMLR coefficients are highly aerosol- and country-dependent, showing the relative
bias in aerosol simulation andmodifying the understanding of the importance of species contributions to total
PM2.5 concentrations in an individual country.We discussed in section 3 howunderestimated dust aerosols in
Indonesia contributed themost (39%) to local PM2.5 and could come from seasonal biomass burning or long-
range transport fromAustralian deserts (figure S4a). Unexpectedly, results for Poland also suggest a relatively
large contribution of dust aerosols (32%) to overall PM2.5, which is comparable to that of POM (37%). There are
significant local sources of dust in Poland especially in heavily industrialized Silesia and southern Poland, and
advected dust from theUkrainian steppe and Saharan sources (Milinevsky et al 2020) that varies greatly on
seasonal scales and from year to year (Milinevsky et al 2020, Szczepanik et al 2021). This combination of sources
in Poland differentiates it from countries inwestern and southern Europe (Di Iorio et al 2009, Israelevich et al
2012), where dust is relatively less important, e.g., Germany and Italy infigure 4.

TheMLRderived PM2.5 in this workmay be useful for various end-users of climatemodel output, andmay
be improved by local insights and observations to reduce bias related to aerosol sources, transport and local
climate interactions. The small computational costs and time required to use themethodmeans that
adjustments can easily bemade to accommodate better knowledge and provide improved air pollutant output
fromglobal climatemodels at regional and higher resolution.
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