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Abstract. Apparent temperature (AP) and ground-level aerosol pollution (PM2.5) are important factors in hu-
man health, particularly in rapidly growing urban centers in the developing world. We quantify how changes in
apparent temperature – that is, a combination of 2 m air temperature, relative humidity, surface wind speed, and
PM2.5 concentrations – that depend on the same meteorological factors along with future industrial emission pol-
icy may impact people in the greater Beijing region. Four Earth system model (ESM) simulations of the modest
greenhouse emissions RCP4.5 (Representative Concentration Pathway), the “business-as-usual” RCP8.5, and the
stratospheric aerosol intervention G4 geoengineering scenarios are downscaled using both a 10 km resolution dy-
namic model (Weather Research and Forecasting, WRF) and a statistical approach (Inter-Sectoral Impact Model
Intercomparison Project – ISIMIP). We use multiple linear regression models to simulate changes in PM2.5 and
the contributions meteorological factors make in controlling seasonal AP and PM2.5. WRF produces warmer
winters and cooler summers than ISIMIP both now and in the future. These differences mean that estimates of
numbers of days with extreme apparent temperatures vary systematically with downscaling method, as well as
between climate models and scenarios. Air temperature changes dominate differences in apparent temperatures
between future scenarios even more than they do at present because the reductions in humidity expected under
solar geoengineering are overwhelmed by rising vapor pressure due to rising temperatures and the lower wind
speeds expected in the region in all future scenarios. Compared with the 2010s, the PM2.5 concentration is pro-
jected to decrease by 5.4 µg m−3 in the Beijing–Tianjin province under the G4 scenario during the 2060s from
the WRF downscaling but decrease by 7.6 µg m−3 using ISIMIP. The relative risk of five diseases decreases by
1.1 %–6.7 % in G4, RCP4.5, and RCP8.5 using ISIMIP but has a smaller decrease (0.7 %–5.2 %) using WRF.
Temperature and humidity differences between scenarios change the relative risk of disease from PM2.5 such
that G4 results in 1 %–3 % higher health risks than RCP4.5. Urban centers see larger rises in extreme apparent
temperatures than rural surroundings due to differences in land surface type, and since these are also the most
densely populated, health impacts will be dominated by the larger rises in apparent temperatures in these urban
areas.
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1 Introduction

Global mean surface temperature increased by 0.92 ◦C
(0.68–1.17 ◦C) during 1880–2012 (IPCC, 2021), which also
naturally impacts the human living environment (Kraaijen-
brink et al., 2017; Garcia et al., 2018). However, neither land
surface temperature nor near-surface air temperature can ad-
equately represent the temperature we experience. Apparent
temperature (AP) – that is, how the temperature feels – is for-
mulated to reflect human thermal comfort and is probably a
more important indication of health than daily maximum or
minimum temperatures (Fischer et al., 2013; Matthews et al.,
2017; P. Wang et al., 2021). There are various approaches to
estimating how the weather conditions affect comfort, but ap-
parent temperature is governed by air temperature, humidity,
and wind speed (Steadman, 1984, 1994). These are known
empirically to affect human thermal comfort (Jacobs et al.,
2013), and thresholds have been designed to indicate danger
and health risks under extreme heat events (Ho et al., 2016).
Analysis of historical apparent temperatures in China (Wu et
al., 2017; Chi et al., 2018; Wang et al., 2019), Australia (Ja-
cobs et al., 2013), and the USA (Grundstein and Dowd, 2011)
all find that apparent temperature is increasing faster than air
temperature. This is due to both decreasing wind speeds and
especially to increasing vapor pressure (Song et al., 2022).

As the world warms, apparent temperature is expected to
rise faster than air temperatures in the future (J. Li et al.,
2018; Song et al., 2022). Hence, humans, and other species,
will face more heat-related stress but less cold-related en-
vironmental stress in the warmer future (Wang et al., 2018;
Zhu et al., 2019). Since most of the population is now ur-
ban, the conditions in cities will determine how tolerable fu-
ture climates are for much of humanity, while the differences
in thermal comfort between urbanized and rural regions will
be a factor in driving urbanization. Reliable estimates of fu-
ture urban temperatures and their rural surroundings require
methods to improve standard climate model resolution to ad-
equately represent the different land surface types, especially
the rapid and accelerating changes in land cover in huge ur-
ban areas characteristic of sprawling developments in the de-
veloping world. This is usually done with either statistical
or dynamic downscaling approaches, and in this article we
examine both methods.

In early 2013, Beijing encountered a serious pollution in-
cident. The concentration of PM2.5 (particles with diameters
less than or equal to 2.5 µm in the atmosphere) exceeded
500 µg m−3 (Wang et al., 2014). Following this event and its
expected impacts on human health (Guan et al., 2016; Fan
et al., 2021) and the economy (Maji et al., 2018; Wang et
al., 2020), the Beijing municipal government launched the
Clean Air Action Plan in 2013. The annual mean concentra-
tion of PM2.5 in the Beijing–Tianjin–Hebei region decreased
from 90.6 µg m−3 in 2013 to 56.3 µg m−3 in 2017, a decrease
of about 38 % (Zhang et al., 2019), although this is still
more than double the EU air quality standard (25 µg m−3)

and above the Chinese FGNS (First Grand National Stan-
dard) of 35 µg m−3. The concentration of PM2.5 is related
to anthropogenic emissions but is also dependent on mete-
orological conditions (Chen et al., 2020). Simulations sug-
gested that 80 % of the 2013–2017 lowering of PM2.5 con-
centration came from emission reductions in Beijing (Chen
et al., 2019). Humidity and temperature are the main meteo-
rological factors affecting PM2.5 concentration in Beijing in
summer, while humidity and wind speed are the main factors
in winter (Chen et al., 2018). Simulations driven by differ-
ent Representative Concentration Pathway (RCP) emission
scenarios with fixed meteorology for the year 2010 suggest
that PM2.5 concentration will meet FGNS under RCP2.6,
RCP4.5, and RCP8.5 in Beijing–Tianjin–Hebei after 2040
(Li et al., 2016).

The focus here is on the differences in apparent temper-
ature and PM2.5 that may arise from solar geoengineering
(that is, a reduction in incoming shortwave radiation to offset
longwave absorption by greenhouse gases) via stratospheric
aerosol intervention (SAI) and pure greenhouse gas climates.
We use all four climate models that have provided sufficient
data from the G4 scenario described by the Geoengineer-
ing Model Intercomparison Project (GeoMIP). G4 specifies
sulfates as the aerosol and greenhouse gas emissions from
the RCP4.5 scenario (Kravitz et al., 2011). The impacts of
G4 on surface temperature and precipitation have been dis-
cussed at regional scales (Yu et al., 2015), and both are low-
ered relative to RCP4.5. Some studies have focused on the
regional impact of SAI on apparent or wet bulb tempera-
tures in Europe (Jones et al., 2018), East Asia (Kim et al.,
2020), and the Maritime Continent (Kuswanto et al., 2021).
But none of these studies have considered apparent tempera-
ture at scales appropriate for rapidly urbanizing regions such
as on the North China Plain. The only study to date on SAI
impacts on PM2.5 pollution used a coarse-resolution (4◦×5◦)
global-scale model with sophisticated chemistry (Eastham et
al., 2018). They simulated aerosol rainout from the strato-
sphere to ground level, leading to an eventual increase in
ground-level PM2.5. Eastham et al. (2018) concluded that
SAI changes in tropospheric and stratospheric ozone domi-
nated PM2.5 impacts on global mortality. However, this study
included only a first-order estimate of the effect of temper-
ature and precipitation change on PM2.5 concentration un-
der geoengineering. It also did not consider the situation in a
highly polluted urban environment, such as that included in
our domain, and which is typical of much of the developing
world.

The greater Beijing megalopolis lies in complex terrain,
surrounded by hills and mountains on three sides and a flat
plain to the southeastern coast (Fig. 1). Over the period
1971–2014, apparent temperature rose at a rate of 0.42 ◦C
per 10 years over the Beijing–Tianjin–Hebei region, with ur-
banization having an effect of 0.12 ◦C per 10 years (Luo and
Lau, 2021). By the end of 2019, the permanent resident pop-
ulation in Beijing exceeded 21 million. Tianjin, 100 km from
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Beijing, is the fourth-largest city in China with a population
of about 15 million, and Langfang (population 4 million) is
about 50 km from Beijing. Thus, the region contains an ur-
banized population comparable to the northeastern US mega-
lopolis. Since its climate is characterized by hot and moist
summer monsoon conditions, the population is at enhanced
risk as urban heat island effects lead to city temperatures
warming faster than their rural counterparts.

There are large uncertainties in projecting PM2.5 concen-
tration in the future due to both climate and industrial poli-
cies. Statistical methods are much faster than atmospheric
chemistry models (Mishra et al., 2015), and different scenar-
ios are easy to implement. We use a multiple linear regression
(MLR) model to establish the links between PM2.5 concen-
tration, meteorology, and emissions (Upadhyay et al., 2018;
Tong et al., 2018). We project and compare the differences
in PM2.5 concentration under G4 and RCP4.5 scenarios and
between different PM2.5 emission scenarios. Accurate mete-
orological data are crucial in simulating future apparent tem-
peratures and PM2.5 because all ESMs suffer from bias, and
this problem is especially egregious at small scales. A com-
panion paper (Wang et al., 2022) looked at differences be-
tween downscaling methods with the same four Earth system
models (ESMs), domain, and scenarios as we use here.

In this paper, we use the downscaled data to explore the
effect of SAI on apparent temperature and PM2.5 over the
greater Beijing megalopolis. The paper is organized as fol-
lows. The data and methods for calculating AP, AP thresh-
olds, the PM2.5 MLR model, and its validation are briefly de-
scribed in Sect. 2. The results from present-day simulations
and future projections of apparent temperature and PM2.5 are
given in Sect. 3, along with their associated impact analyses.
In Sect. 4 we discuss and interpret the findings, and finally
we conclude with a summary of the main implications of
the geoengineering impacts on these two important human
health indices in Sect. 5.

2 Data and methods

2.1 Scenarios, ESM, downscaling methods, and bias
correction

The scenarios, ESM, downscaling methods, and bias-
correction methods we use here are as described in detail by
Wang et al. (2022), and we just summarize the method briefly
here. We use three different scenarios: RCP4.5 and RCP8.5
(Riahi et al., 2011) as well as the GeoMIP G4 scenario, which
span a useful range of climate scenarios. RCP4.5 is similar
(Vandyck et al., 2016) to the expected trajectory of emissions
under the 2015 Paris Climate Accord agreed nationally deter-
mined contributions (NDCs). RCP8.5 represents a formerly
business-as-usual scenario with no climate mitigation poli-
cies and a large signal-to-noise ratio. G4 represents a similar
radiative forcing as produced by the 1991 Mount Pinatubo
volcanic eruption repeating every 4 years.

Climate simulations are performed by four ESMs: BNU-
ESM (Ji et al., 2014), HadGEM2-ES (Collins et al., 2011),
MIROC-ESM (Watanabe et al., 2011), and MIROC-ESM-
CHEM (Watanabe et al., 2011). We compare dynamical and
statistical downscaling methods to convert the ESM data to
scales more suited to capturing differences between contrast-
ing rural and urban environments. To validate the down-
scaled AP from model results, we use the daily tempera-
ture, humidity, and wind speed during 2008–2017 from the
gridded observational dataset CN05.1 with the resolution of
0.25◦× 0.25◦ based on the observational data from more
than 2400 surface meteorological stations in China, which
are interpolated using the “anomaly approach” (Wu and Gao,
2013). This dataset is widely used and has good performance
relative to other reanalysis datasets over China (Zhou et al.,
2016; Y. Yang et al., 2019, 2023; Yang and Tang, 2023). Dy-
namical downscaling for the four ESM datasets was done
with WRFv.3.9.1 with a parameter set used for urban China
studies (Wang et al., 2012) in two nested domains at 30
and 10 km resolution over two time slices (2008–2017 and
2060–2069). We corrected the biases in WRF output using
the quantile delta mapping method (QDM; Wilcke et al.,
2013) with ERA5 (Hersbach et al., 2018) to preserve the
mean probability density function of the output over the do-
main without degrading the WRF spatial pattern. All WRF
results presented are after QDM bias correction. Statistical
downscaling was done with the trend-preserving statistical
bias-correction Inter-Sectoral Impact Model Intercomparison
Project (ISIMIP) method (Hempel et al., 2013) for the raw
ESM output, producing output matching the mean ERA5 ob-
servational data in the reference historical period with the
same spatial resolution, while allowing the individual ESM
trends in each variable to be preserved.

2.2 PM2.5 concentration and emission data

In China there were few PM2.5 monitoring stations before
2013 (Xue et al., 2021). However, aerosol optical depths pro-
duced by the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) have been used to build a daily PM2.5 con-
centration dataset (ChinaHighPM2.5) at 1 km resolution from
2000 to 2018 (Wei et al., 2021). We use monthly PM2.5 con-
centration data during 2008–2015 from ChinaHighPM2.5 to
train the MLR model and the data during 2016–2017 to vali-
date it. Figure S1 in the Supplement shows the annual PM2.5
concentration over Beijing areas during 2008 (a) and 2017
(b).

Recent gridded monthly PM2.5 emission data were de-
rived from the Hemispheric Transport of Air Pollution
(HTAP_V3) with a resolution of 0.1◦× 0.1◦ during 2008–
2017, which is a widely used anthropogenic emission dataset
(Janssens-Maenhout et al., 2015). PM2.5 emissions over Bei-
jing areas during 2008 (c) and 2017 (d) are shown in Fig. S1.

Future gridded monthly PM2.5 emissions to 2050 are avail-
able in the ECLIPSE V6b database (Stohl et al., 2015), gen-
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Figure 1. (a) The 10 km WRF domain (red box) nested inside a 30 km resolution WRF domain (large black sector). (b) The inner domain
topography and major conurbations (red dots), with the urban areas of Beijing and Tianjin enclosed in red curves. Panels (c) and (d) show
the population density (persons per km2) of Beijing and Tianjin provinces (defined by black borders) in 2010 and the grid cells within the
Beijing–Tianjin province (blue boxes) when downscaled by ISIMIP (c) and WRF (d).

erated by the GAINS (Greenhouse gas Air pollution Inter-
actions and Synergies) model (Klimont et al., 2017). The
ECLIPSE V6b baseline emission scenario assumes that fu-
ture anthropogenic emissions are consistent with those under
current environmental policies; hence, it is the “worst” sce-
nario without considering any mitigation measures (M. Li
et al., 2018; Nguyen et al., 2020). Projected emissions are
shown in Fig. S2, with emissions plateauing at ∼ 40 kt yr−1

after 2030, so we assume that 2060s levels are similar. These
ECLIPSE projections are significantly larger than present-
day estimates from HTAP_V3. We therefore estimate 2060s
emissions as the recent gridded monthly PM2.5 emissions
from HTAP_V3 scaled by the ratios of 2050 ECLIPSE emis-
sions to average annual emissions between 2010 and 2015.
Before processing data, PM2.5 concentration is bilinearly in-
terpolated to the WRF and ISIMIP grids, while PM2.5 emis-
sions are conservatively interpolated to the target grids.

2.3 Apparent temperature

We used a widely used empirical formula to calculate the
apparent temperature under shade (Steadman, 1984) that
combines various meteorological fields, which also has
been widely used to study heat waves, heat stress, and
temperature-related mortality (Perkins and Alexander, 2013;
Lyon and Barnston, 2017; Lee and Sheridan, 2018; Zhu et
al., 2021):

AP=−2.7+ 1.04× T + 2×P − 0.65×W, (1)

where AP is the apparent temperature (◦C) under shade,
meaning that radiation is not considered; T is the 2 m tem-
perature (◦C), W is the wind speed at 10 m above the ground
(m s−1), and P is the vapor pressure (kPa) calculated by

P = Ps×RH, (2)

where Ps is the saturation vapor pressure (kPa), and RH is
the relative humidity (%). Ps is calculated using the Tetens
empirical formula (Murray, 1966).

Ps =

 0.61078× e
(

17.2693882×T
T+237.3

)
, T≥0

0.61078× e
(

21.8745584×(T−3)
T+265.5

)
, T <0

(3)

To assess the potential risks of heat-related exposure from
apparent temperature, we also count the number of days with
AP> 32 ◦C (NdAP_32) in the Beijing–Tianjin province.
This threshold does not lead to extreme risk and death;
instead, it is classified as requiring “extreme caution” by
the US National Weather Service (National Weather Ser-
vice Weather Forecast Office, https://www.weather.gov/ama/
heatindex, last access: 14 September 2023) but carries risks
of heatstroke, cramps, and exhaustion (Table S1 in the Sup-
plement). A threshold of 39 ◦C is classified as “dangerous”
with a risk of heatstroke. While hotter AP thresholds would
give a more direct estimate of health risks, the statistics
of these presently rare events mean that detecting differ-
ences between scenarios is less reliable than using the cooler
NdAP_32 threshold simply because the likelihood of rare
events is more difficult to accurately quantify than more com-
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mon events that are sampled more frequently. There is evi-
dence that in some distributions, the likelihood of extremes
will increase more rapidly than central parts of a probability
distribution: for example, large Atlantic hurricanes increas-
ing faster than smaller ones (Grinsted et al., 2013). But the
conservative assumption is that similar differences between
scenarios would apply for higher thresholds as well as lower
ones.

2.4 Population dataset

Since health impacts scale with the number of people af-
fected, we calculate the NdAP_32 weighted by population
(Fig. 1c and d). We employ gridded population data (Fu et al.,
2014; https://doi.org/10.3974/geodb.2014.01.06.V1) with a
spatial resolution of 1× 1 km collected in 2010. The popu-
lation density distribution in Beijing and Tianjin provinces
with the ISIMIP and WRF grid cells contained is shown in
Fig. 1c and d.

2.5 MLR model calibration

Many meteorological factors, such as temperature (You et al.,
2017), precipitation (Guo et al., 2016), wind speed (Yin et al.,
2017), radiation (Chen et al., 2017), and planetary boundary
layer height (Zheng et al., 2017), can affect the PM2.5 con-
centration. Their relative importance differs regionally. But
here we consider only differences that are produced by the
three scenarios, so, for example, we do not include precip-
itation in our analysis because none of the ESMs simulate
significant changes in our domain (Table S2). Previous stud-
ies have shown that wind and humidity are the dominant me-
teorological variables for PM2.5 concentration in the region
we study (Chen et al., 2020), while changes in temperature
and winds obviously impact local concentrations. Hence, we
generate an MLR model between PM2.5 and temperature (T ),
relative humidity (H ), zonal wind (U ), meridional wind (V ),
and PM2.5 emissions (E) at every grid cell as follows:

PM2.5 =
∑

aiXi + b, (4)

where Xi(i=1,2,3,4,5) represents the five factors, ai represents
the regression coefficients of Xi with PM2.5, and b is the
intercept, which is a constant. We assume that all factors
should be included in the regression. All the meteorological
variables are from the statistical and dynamical downscaling
and bias-corrected results during 2008–2017, with the first
8 years used for training the model and the second 2 years
used for validating the model. We train the MLR for the four
ESMs under statistical and dynamical downscaling in each
grid cell separately, thus accounting for spatial differences in
the weighting of Xi across the domain. Meteorological vari-
ables under G4, RCP4.5, and RCP8.5 during 2060–2069 are
used for projection.

Here, we use PM2.5 concentration including both primary
and secondary PM2.5 as the dependent variable and primary

PM2.5 emissions and meteorological factors as independent
variables in the MLR. Future PM2.5 emissions will change in
ways that are rather speculative as they depend on technolog-
ical innovation and policies that are inherently unpredictable.
The MLR assumes that the past emissions mix and secondary
aerosols remain unchanged in the future, but meteorological
factors will also indirectly impact secondary PM2.5 to some
extent.

The contributions of meteorology and PM2.5 emissions to
future concentrations are examined by using recent PM2.5
emissions (baseline) and future PM2.5 emissions (mitiga-
tion), as well as the downscaled climate scenarios. Modeled
PM2.5 concentration using recent meteorology and PM2.5
emissions during 2008–2017 (2010s) is considered to be our
reference.

Collinearity of variables is inevitable in our domain. The
domination of the seasonal winter and summer monsoonal
weather patterns means that temperatures, precipitation, and
wind direction are all highly seasonal and correlated. In win-
ter, precipitation is minimal and northerly winds predomi-
nate, and in summer the opposite is true. These three meteo-
rological fields are important and also important for emis-
sions, since sources are essentially absent from the north,
while temperature and humidity dominate aerosol micro-
physics.

We use the variance inflation factor (VIF) to test if there
is excessive collinearity in our MLR models. Generally, if
the VIF value is greater than 10, there is a collinearity prob-
lem between variables. Figure S3 shows that there are indeed
collinearity problems in some areas, but not in the Beijing–
Tianjin province, so there is no impact on the results for the
urban areas. We explored the impact of collinearity on the
results in high-VIF grid cells by removing factors with VIF
greater than 10 and the full variable model (Figs. S4 and S5).
Using ISIMIP downscaling, we only removed the tempera-
ture, while we removed the temperature and U wind in the
WRF method. Changes in PM2.5 concentration range from
−1 to 1 µg m−3 in all ESMs under G4 with the baseline sce-
nario (Fig. S4). In contrast, PM2.5 concentrations decreased
by 5–15 µg m−3 with the “mitigation” scenario (Fig. S5) after
dealing with the collinearity problem. This means that PM2.5
concentration has more sensitivity to the PM2.5 emission af-
ter accounting for collinearity. Although the absolute PM2.5
concentrations are different accounting for collinearity, there
are no significant differences in the changes in PM2.5 con-
centration between G4 and the 2010s, RCP4.5, and RCP8.5
in the Beijing–Tianjin province.

2.6 MLR model validation

Figure 2 shows the scattergram of PM2.5 concentration be-
tween the ChinaHighPM2.5 dataset and MLR model dur-
ing the validation period based on ISIMIP and WRF re-
sults. Observations and MLR models have Pearson’s corre-
lations coefficients around 0.86 for ISIMIP results during
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Figure 2. Scattergrams of PM2.5 concentration derived by MODIS and estimated by MLR during the validation period (2016–2017). Top
panels (a–d) are the ISIMIP statistical downscaling results, and bottom panels (e–h) are the WRF dynamical downscaling results. R2 means
the variance explained by the MLR, and the color bar denotes the density of data points at integer intervals.

the validation period, and the coefficient of determination
of MLRs is 0.74–0.75 (Fig. 2a–d). WRF Pearson’s correla-
tions are slightly lower at 0.82–0.85, and explained variance
ranges from 0.68–0.72 (Fig. 2e–h). These results are similar
to those found by Jin et al. (2022). We also compare the spa-
tial patterns of observed and modeled PM2.5 in Fig. S6. Both
ISIMIP and WRF results can simulate the distribution char-
acteristics of high concentrations of PM2.5 in the southeast
and low concentrations in the northwest.

We also tested the accuracy of our MLR model projec-
tion against simulations (Li et al., 2023) with the Commu-
nity Multiscale Air Quality (CMAQ) model developed by the
United States Environmental Protection Agency, which can
simulate particulate matter on local scales (Foley et al., 2010;
X. Yang et al., 2019) when coupled to WRF. We used the
same meteorological forcing as Li et al. (2023) with the EIT1
PM2.5 emissions scenario in 2050 under RCP4.5 (Fig. S7).
The spatial patterns are well correlated in all seasons (0.68–
0.73), but PM2.5 concentrations are about twice as high in
our MLR model as those from Li et al. (2023). PM2.5 con-
centrations from our regression model are also higher than in
the referenced data during 2008–2017. While the differences
in absolute PM2.5 concentrations are significant, we mainly
consider differences in the PM2.5 concentration between G4
and two RCPs (RCP4.5 and RCP8.5) in our study, which
we cannot compare with the single RCP4.5 scenario simu-
lated by Li et al. (2023). We do compare the spatial pattern
of differences in PM2.5 concentration between the baseline

and EIT1 under RCP4.5. Because of the small slope coeffi-
cient of PM2.5 emissions in our MLR, we do not capture the
large reduction of the PM2.5 concentration in the Beijing city
center seen by Li et al. (2023) (Fig. S8).

2.7 Relative risks of mortality related to PM2.5

We estimate the effects of PM2.5 on mortality by consid-
ering changes in the relative risk (RR) of mortality related
to PM2.5. We lack data on mortality rates in the study do-
main, without which we cannot estimate numbers of fatal-
ities, just the average population-weighted RR. Burnett et
al. (2014) established the integrated exposure–response func-
tions we use. The RR is nonlinear in concentration – that
is, an initially low-PM2.5 region will suffer higher mortality
and RR than an initially high-PM2.5 region if PM2.5 is in-
creased by the same amount. Ran et al. (2023) provide RR
values for PM2.5 concentrations up to 200 µg m−3 that in-
clude the five main major disease end points (Global Burden
of Disease Collaborative Network, 2013) of PM2.5-related
mortality: chronic obstructive pulmonary disease, ischemic
heart disease, lung cancer, lung respiratory infection, and
stroke. We calculate the average population-weighted rela-
tive risks based on the gridded population dataset (Sect. 2.4)
and PM2.5 concentration in the Beijing–Tianjin province de-
fined in Fig. 1c–d, following Ran et al. (2023).
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Figure 3. Seasonally averaged AP and equivalent temperature of each term in Eq. (1) for the Beijing–Tianjin province (a–c) and Beijing–
Tianjin urban areas (d–f) during 2008–2017 from CN05.1 (a, d), the four-model ensemble mean after ISIMIP (b, e), and the ensemble mean
after WRF (c, f). Term 1 is 1.04 T , term 2 is 2P , and term 3 is −0.65W .

RRpop,k =

∑G
g=1POPg ×RRk(Cg)∑G

g=1POPg
(5)

RRpop,k is the average population-weighted relative risk of
disease k (k = 1–5), POPg is the population of grid g, and
RRk (Cg) is the relative risk of disease k when the PM2.5
concentration is Cg in the grid of g.

2.8 Determination of contributions to changes in AP and
PM2.5

Equation (1) describes how AP is calculated, and this can be
broken down into how much equivalent temperature is pro-
duced by each term (Fig. 3), with 2008–2017 as the base-
line interval for season-by-season contributors to AP. Cross-
scenario seasonal differences in contributors are then cal-
culated as follows. We use an MLR approach, since this
minimizes the square differences from the mean across the
dataset, with the attendant assumption of independence be-
tween the data. Alternatives may also be considered that, e.g.,
minimize the impact of outliers by considering the magnitude
of the differences, but we prefer to keep the attractive prop-
erties of a least-squares approach. The dependent variable in
the MLR is the change in AP (1 AP), and the independent
variables are changes in each factor for each future scenario,

1AP=
∑

αiXi +β, (6)

where Xi(i=1,2,3) represents the daily changes in the three
meteorological factors between two scenarios for 2 m tem-

perature (1T ), 2 m relative humidity (1 RH), and 10 m wind
speed (1W ); αi represents the regression coefficients of Xi
with1AP; and β is the intercept, which is a constant. We as-
sume that all three meteorological factors should be included
in the regression, and we estimate the contributions of each
factor to changes in AP as

Ki =
αiXi∑
αiX̄i

, (7)

where Ki(i=1,2,3) represents the contributions (in units of
temperature) from each factor to the changes in the AP, and
Xi represents the mean differences in temperature equivalent
due to each factor between two scenarios.

The contribution of changes to each factor in changes in
PM2.5 is simpler since we assume that the relationship be-
tween each factor and PM2.5 is linear, and so its contribution
is the ratio of the product of the regression coefficient and the
change in each factor to the change in PM2.5.

3 Results

3.1 Recent apparent temperatures

Figure 3 shows the seasonally averaged AP and equivalent
temperatures caused by temperature, relative humidity, and
wind speed in the Beijing–Tianjin province and Beijing–
Tianjin urban areas during 2008–2017. According to the
CN05.1 results (Fig. 3a, d), AP and the three separate terms
show similar seasonal patterns over the whole province and
just the urban areas. Vapor pressure is higher in summer and
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wind speed is higher in spring. AP is lower than 2 m temper-
ature in all seasons except summer and especially lower in
winter. AP, temperature, vapor pressure, and wind speed are
all higher in urban areas than in the surrounding rural region
in any season. The ISIMIP results (Fig. 3b, e), by design, per-
fectly reproduce the CN05.1 seasonal characteristics of AP,
temperature, vapor pressure, and wind speed. WRF shows
a similar pattern as that from CN05.1, but for the Beijing–
Tianjin province, WRF overestimates both 2 m temperature
and AP in winter by 2.1 ◦C and by 1.7 ◦C, respectively, rel-
ative to CN05.1 (Fig. 3c). In the Beijing–Tianjin urban ar-
eas, WRF overestimates the temperature and AP relative to
CN05.1 in all seasons, especially in winter (Fig. 3f).

We compare the simulations of mean apparent tempera-
ture and NdAP_32 from both WRF dynamical downscaling
with QDM and from ISIMIP statistical downscaling during
2008–2017 in Fig. 4. Both the WRF with QDM and ISIMIP
methods produce a pattern of apparent temperature which is
close to that from CN05.1. While the raw AP from ESMs
is overestimated in the high mountains in Zhangjiakou and
underestimated on the southern plain, it shares a similar pat-
tern with temperature from ESMs (Wang et al., 2022). The
raw ESM outputs were improved after dynamical and statis-
tical downscaling. The average annual AP from ISIMIP (9.6–
9.7 ◦C) is 0.5 ◦C higher than that from CN05.1 (9.1 ◦C) over
the Beijing–Tianjin province for all ESMs (Table 1). WRF
produces warmer apparent temperatures in the city centers of
Beijing and Tianjin and lower ones in the high Zhangjiakou
mountains than recorded in the lower-resolution CN05.1 ob-
servations. There are also differences between different mod-
els after WRF downscaling. For example, apparent tempera-
tures from the two MIROC models downscaled by WRF are
the warmest. In contrast, AP from all four ESMs after ISIMIP
shows very similar patterns (Fig. S9).

ESMs tend to overestimate the number of days with
AP> 32 ◦C in southeastern Beijing and the whole Tianjin
province. Both ISIMIP and WRF appear to overestimate the
NdAP_32 in Beijing urban areas and the southerly lowland
areas, although NdAP_32 is close to zero in the colder rural
areas at relatively high altitude for both downscaling meth-
ods. Some of these differences may be due to the WRF sim-
ulations being at a finer resolution than the 0.25◦× 0.25 ◦C
N05.1, leading to higher probabilities of high AP in urban
areas (Fig. 5d). ISIMIP results also show slight overestima-
tions, especially in the tails of the distribution (AP> 30 ◦C)
for urban areas (Fig. 5c). CN05.1 gives about 5 NdAP_32
days per year in southern Beijing and Tianjin, but there are
nearly 15 NdAP_32 days from ISIMIP and over 20 NdAP_32
days per year from WRF downscaling in Beijing–Tianjin
urban areas during 2008–2017. NdAP_32 from WRF and
ISIMIP downscaling of all ESMs is overestimated relative
to CN05.1. But there are differences in ESMs under the two
downscalings: with ISIMIP, HadGEM2-ES and BNU-ESM
have more NdAP_32 days than the two MIROC models,
while the reverse occurs with WRF (Fig. S10).

The Taylor diagram of the daily mean apparent temper-
ature in the Beijing–Tianjin province and Beijing–Tianjin
urban areas from 2008–2017 for the four ESMs shows
that correlation coefficients between ESMs and CN05.1 are
greater than 0.85 under both downscaling methods. Although
there are differences between ESMs, the performance of
WRF, with a higher correlation coefficient and smaller SD
(standard deviation) and RMSD (root mean square devi-
ation), is usually superior to ISIMIP (Fig. S11). Taking
the Beijing–Tianjin urban areas as an example (Fig. S11b),
under the ISIMIP method, MIROC-ESM, MIROC-ESM-
CHEM, and HadGEM2-ES have the same correlation co-
efficient (0.92) and RMSD (5.4 ◦C) as the CN05.1, while
BNU-ESM has a lower correlation coefficient (0.88) and
higher RMSD (7.0 ◦C). Under WRF simulations, MIROC-
ESM and MIROC-ESM-CHEM have larger correlation coef-
ficients and smaller RMSD with CN05.1 than HadGEM2-ES
and BNU-ESM.

Figure 5 shows the probability density functions (PDFs)
of daily AP from the four ESMs under ISIMIP and WRF in
the Beijing–Tianjin province and Beijing–Tianjin urban ar-
eas during 2008–2017. ISIMIP overestimates the probability
of extremely cold AP relative to CN05.1 (especially BNU-
ESM), although all ESMs reproduce the CN05.1 PDF well at
high AP. WRF can reproduce the CN05.1 distribution of AP
better than ISIMIP, but high AP is overestimated relative to
CN05.1 and the urban areas perform less well than the whole
Beijing–Tianjin province. In urban areas all ESMs driving
WRF tend to underestimate the probability of lower AP and
to overestimate the probability of higher AP, especially the
two MIROC models (Fig. 5d). Figure S12 displays the an-
nual cycle of monthly AP, with ISIMIP proving to be excel-
lent by design at reproducing the monthly AP. Under WRF
downscaling AP shows more across-model differences, espe-
cially during summer, and with greater spread for the urban
areas.

3.2 2060s apparent temperatures

3.2.1 Changes in apparent temperature

Figure 6 shows the ISIMIP and WRF ensemble mean
changes in the annual mean AP under G4 during 2060–
2069 relative to the past and the two future RCP scenar-
ios. ISIMIP-downscaled AP (Fig. 6a–c) shows significant
anomalies (p < 0.05), with whole-domain rises of 2.0 ◦C in
G4–2010s and decreases of 1.0 and 2.8 ◦C in G4–RCP4.5
and G4–RCP8.5, respectively. In WRF results, AP under G4
is about 1–2 ◦C warmer than that under the 2010s, as well
as 0.8 and 2.5 ◦C colder than that under RCP4.5 and RCP8.5
over the whole domain. Individual ESM results downscaled
by ISIMIP and WRF are in Figs. S14 and S15. For both
ISIMIP and WRF downscaling results, the two MIROC mod-
els show stronger warming than the other two models be-
tween G4 and the 2010s. WRF-downscaled AP driven by
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Figure 4. Top row: the spatial distribution of mean apparent temperature from CN05.1 (a), raw ESM ensemble mean after bilinear inter-
polation (b), four-model ensemble mean after ISIMIP (c), and ensemble mean after WRF (d) during 2008–2017. Bottom row: the spatial
distribution of the annual mean number of days with AP> 32 ◦C from CN05.1 (e), ESMs (f), ISIMIP (e), and WRF (f) during 2008–2017.
Figures S9 and S10 show the pattern of AP and NdAP_32 for the individual ESMs.

Table 1. The annual mean apparent temperature and population-weighted NdAP_32 in the Beijing–Tianjin province and Beijing–Tianjin
urban areas (Fig. 1b) from CN05.1, ISIMIP, and WRF during 2008–2017.

Data sources AP (◦C) NdAP_32 (d yr−1)

Provinces Urban Population weighted for province (Fig. 1c, d)

WRF ISIMIP WRF ISIMIP WRF ISIMIP

MIROC-ESM 10.5 9.6 13.6 11.4 22.2 10.1
MIROC-ESM-CHEM 10.5 9.6 13.6 11.4 21.9 11.0
HadGEM2-ES 9.5 9.6 12.0 11.4 12.3 11.1
BNU-ESM 9.4 9.7 11.8 11.5 10.2 12.7
CN05.1 9.1 11.1 2.4

HadGEM2-ES exhibits the strongest cooling, with decreases
of 1.7 ◦C between G4 and RCP4.5 and decreases of 3.0 ◦C
between G4 and RCP8.5. Although different ESMs show
different changes in AP between G4 and other scenarios,
changes in AP are almost the same everywhere for a given
ESM in the ISIMIP results (Fig. S14). WRF-downscaled
AP anomalies driven by two MIROC models are larger in
the Zhangjiakou mountains and smaller in the Beijing ur-
ban areas and Tianjin between G4 and the 2010s (Fig. S15).
Changes in AP from ISIMIP results, whether across whole
province or just the urban areas, are statistically identical
given scenarios (Table 2), which is consistent with patterns
in Fig. 6. AP under G4 is 0.8 ◦C (1.0 ◦C) and 2.6 ◦C (2.8 ◦C)
colder than that under RCP4.5 and RCP8.5 in Beijing–
Tianjin urban areas from ISIMIP (WRF) results. The warm-
ing between G4 and the 2010s in urban areas is 1.0 ◦C in
WRF results, while it is 2.0 ◦C in ISIMIP results (Table 2).

3.2.2 Contributing factors to changes in AP

Figure 7 shows the ISIMIP and WRF ensemble mean
changes in the annual mean AP anomalies for G4 during
2060–2069 relative to the past and the two future RCP sce-
narios. ISIMIP-downscaled AP (Fig. 7a–c) shows significant
anomalies (p < 0.05) across the whole domain, even for the
relatively small differences in G4–RCP4.5. 1AP by WRF is
lower than that by ISIMIP. Between G4 and the 2010s, APs
are projected to have increases of 1.8 (1.6), 2.1 (1.8), 2.4
(−0.2), and 1.8 (0.8) ◦C from winter to autumn in ISIMIP
(WRF) results. In ISIMIP results, the contribution of temper-
ature ranges from 91 %–104 %, and the contribution of wind
speed ranges from 3 %–10 % in all seasons, while the con-
tribution of humidity is negative or insignificant (Fig. 7a).
However, the contribution of humidity is positive in WRF re-
sults (Fig. 7a). Between RCP4.5 and the 2010s, annual mean
AP is projected to increase by 3.0 and 1.8 ◦C in ISIMIP and
WRF results, respectively, which is higher than that between
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Figure 5. The probability density function (PDF) for daily apparent temperature under ISIMIP (a, c) and WRF (b, d) results in the Beijing–
Tianjin province (a, b) and Beijing–Tianjin urban areas (c, d) during 2008–2017.

Table 2. Difference in apparent temperature between the G4 and other scenarios for the Beijing–Tianjin province and Beijing–Tianjin urban
areas as defined in Fig. 1b during 2060–2069. Bold indicates that the differences or changes are significant at the 5 % level according to the
Wilcoxon signed rank test (units: ◦C).

Model G4–2010s G4–RCP4.5 G4–RCP8.5

WRF ISIMIP WRF ISIMIP WRF ISIMIP

Urban Province Urban Province Urban Province Urban Province Urban Province Urban Province

MIROC-ESM 0.9 1.5 2.2 2.2 −0.5 −0.4 −0.9 −0.9 −2.3 −2.1 −2.8 −2.7
MIROC-ESM-CHEM 0.9 1.5 2.9 2.8 −0.4 −0.4 −0.1 −0.1 −2.0 −2.0 −2.1 −2.1
HadGEM2-ES 1.1 1.0 1.8 1.7 −1.6 −1.6 −1.6 −1.6 −3.1 −3.1 −3.3 −3.3
BNU-ESM 1.2 1.1 1.2 1.3 −0.8 −0.8 −1.3 −1.3 −2.8 −2.7 −2.9 −2.9
Ensemble 1.0 1.3 2.0 2.0 −0.8 −0.8 −1.0 −1.0 −2.6 −2.5 −2.8 −2.8

G4 and the 2010s. The increase in temperature and decrease
in wind speed have a significant impact on the annual average
1AP that contributed 97 % (94 %) and 4 % (3 %) to ISIMIP
(WRF) results. The contributions of changes in humidity are
significantly positive under G4 and RCP4.5 in WRF results,
while it is the opposite in the ISIMIP results (Fig. 7a–b).

Relative to RCP4.5 in the 2060s, AP is projected to de-
crease by 1.0 (0.4), 0.7 (0.8), 0.8 (0.7), and 1.3 (1.4) ◦C
from winter to autumn under G4 in ISIMIP (WRF) results
(Fig. 7c). In summer, the contributions from changes in tem-
perature and humidity are 94 % (105 %) and 8 % (−9 %)
in ISIMIP (WRF) results. There are insignificant contribu-
tions from wind speed under ISIMIP results but a signifi-
cant slight positive contribution (0.7 %–4 %) under WRF re-
sults (Fig. 7c). The annual mean AP under G4 is 2.8 (2.6) ◦C

lower than that under RCP8.5 in the ISIMIP (WRF) result. In
this case, the contribution of changes in wind to1AP ranges
from 3 %–5 % by ISIMIP, while it is close to 0 by WRF. As
expected, 1AP is mainly determined by the changes in tem-
perature, with contributions usually above 90 % between dif-
ferent scenarios.

A useful measure of heat impacts that may be missed
if considering only air temperatures is the seasonality of
the differences between AP and air temperature (1(AP–T );
Fig. 8). The four-model ensemble annual mean1(AP–T ) un-
der ISIMIP is projected to rise by 0.4, 0.5, and 0.9 ◦C under
G4, RCP4.5, and RCP8.5 relative to the 2010s. Under WRF,
1(AP–T ) is much smaller than under ISIMIP but still ris-
ing faster than air temperatures: by 0.2, 0.3, and 0.5 ◦C un-
der G4, RCP4.5, and RCP8.5 relative to the 2010s, respec-
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Figure 6. Spatial pattern of ensemble mean apparent temperature difference (◦C) under different scenarios over 2060–2069: G4–2010s (a, d),
G4–RCP4.5, (b, e), and G4–RCP8.5 (c, f) based on ISIMIP and WRF methods. The 2010s refer to the 2008–2017 period. Stippling indicates
grid points where differences or changes are not significant at the 5 % level according to the Wilcoxon signed rank test.

tively. In general, the largest anomalies in 1(AP–T ) are in
summer under both WRF and ISIMIP downscaling, but the
two MIROC models under WRF have small or even negative
1(AP–T ) in summer with WRF.

3.2.3 Changes in the number of days with AP>32 ◦C

The NdAP_32 anomalies in Fig. 9 show that ISIMIP projects
an increase of about 20 d yr−1 with AP> 32 ◦C for the south-
east of the Beijing province and 10 d in the western areas of
Beijing under G4 relative to the 2010s. NdAP_32 is about
10 d fewer under G4 than RCP4.5 with no clear spatial differ-
ences. G4 has about 35 fewer NdAP_32 days in the southern
part of the domain and 20 fewer days in the western domain
than the RCP8.5 scenario. In contrast, WRF suggests that
most areas do not show any significant difference between
G4 and the 2010s; while the anomalies relative to RCP4.5
are similar to ISIMIP, the differences are insignificant over
more area than ISIMIP. G4–RCP8.5 anomalies with WRF are
smaller than with ISIMIP, and differences are not significant
in the high Zhangjiakou mountains. The urban areas show
larger decreases in NdAP_32 than the more rural areas, even
on the low-altitude plain. Individual ESMs show almost no
statistically significant differences between G4 and RCP4.5
(Figs. S16 and S17), but the differences seen in Fig. 9 are sig-
nificant because of the larger sample size in the significance
test. All ESMs with ISIMIP show more NdAP_32 days in the
urban areas under G4 than the 2010s, while the two MIROC
models driving WRF show fewer NdAP_32 days in Beijing–
Tianjin urban areas (Figs. S16, S17).

The PDF of daily apparent temperature in summer over
Beijing–Tianjin urban areas (Fig. 10) shifts rightwards for
G4, RCP4.5, and RCP8.5 during the 2060s relative to the

2010s. Figure 10 shows that by the 2060s, the dangerous
threshold of AP> 39 ◦C is crossed frequently under RCP8.5
with both WRF and ISIMIP downscaling, but for the RCP4.5
and G4 scenarios these events are much rarer. ISIMIP results
tend to show higher probability tails (extreme events) than
under WRF simulations.

Population-weighted NdAP_32 in the 2060s for the
Beijing–Tianjin province is shown in Table 3. ISIMIP
downscaling suggests ensemble mean rises in NdAP_32 of
22.4 d yr−1 under G4 relative to the 2010s but that G4 has 8.6
and 33.5 d yr−1 less than RCP4.5 and RCP8.5, respectively.
NdAP_32 from WRF under G4 is reduced by 19.6 d yr−1 rel-
ative to RCP8.5 and by 6.3 d yr−1 relative to RCP4.5 (Ta-
ble 3).

3.3 PM2.5 in the 2060s

3.3.1 PM2.5 scenarios in the 2060s

We first project the change in PM2.5 under G4 and the
aerosol mitigation scenario in the 2060s relative to the 2010s
(Fig. 11a, e). Both ISIMIP and WRF project PM2.5 de-
creases in most areas, especially in Tianjin and Langfang, but
PM2.5 decreases more under ISIMIP than WRF. PM2.5 con-
centration decreases by 7.6 µg m−3 over the Beijing–Tianjin
province in ISIMIP and decreases by 5.4 µg m−3 in WRF
(Table S3). PM2.5 concentration is 0.5–8 µg m−3 higher in
northern Beijing under G4 (mitigation) than during the 2010s
in WRF. To show the impact of emission reductions, we com-
pare the PM2.5 concentration between the aerosol baseline
and mitigation scenarios under G4 in the 2060s (Fig. 11b, f)
and compare the mitigation PM2.5 concentration under G4
and the RCP scenarios in the 2060s to clarify the effect of
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Figure 7. The seasonal changes in AP (1AP) and the seasonal contribution of climatic factors to 1AP for Beijing and Tianjin urban areas
under ISIMIP and WRF between G4 and the 2010s (a), RCP4.5 and the 2010s (b), G4 and RCP4.5, (c) and G4 and RCP8.5 (d) in the 2060s
based on ensemble mean results. Colors and numbers in each cell correspond to the color bar, and the asterisks (*) above the columns and in
the cells indicate that differences are significant at the 5 % significance level under the Wilcoxon test.

Table 3. Difference in population-weighted NdAP_32 between the G4 and other scenarios for the Beijing–Tianjin province (Fig. 1c, d)
during 2060–2069. Bold indicates that the changes are significant at the 5 % level according to the Wilcoxon signed rank test (units: d yr−1).

Beijing–Tianjin province G4–2010s G4–RCP4.5 G4–RCP8.5

ISIMIP WRF ISIMIP WRF ISIMIP WRF

MIROC-ESM 18.6 −8.1 −17.0 0.8 −35.4 −13.1
MIROC-ESM-CHEM 28.7 −10.2 3.9 −2.2 −33.7 −15.5
HadGEM2-ES 25.7 9.4 −12.5 −13.5 −24.3 −25.3
BNU-ESM 16.4 13.6 −8.6 −10.4 −40.5 −24.4
Ensemble 22.4 ± 2.9 1.2± 6.0 −8.6 ± 4.5 −6.3 ± 3.4 −33.5 ± 3.4 −19.6 ± 3.1

geoengineering compared with climate warming. Compared
with the baseline scenario, the PM2.5 concentration is lower
under the mitigation scenario, as expected in both ISIMIP
and WRF under G4 (Fig. 11b, f), and has a similar spatial
pattern to that in Fig. 11a and e. Compared with RCP4.5 and
RCP8.5, PM2.5 concentrations under G4 are higher over the
Beijing–Tianjin province in ISIMIP results (Fig. 11c–d), but
with large differences between the four ESMs. G4 PM2.5 is
simulated as greater than in RCP scenarios under HadGEM2-
ES and BNU-ESM (Fig. S19k, l, o, p), but there are insignifi-
cant differences in most areas under the two MIROC models

(Fig. S19c, d, g, h). PM2.5 concentrations are larger between
G4 and RCP8.5. WRF simulations show similar changes in
PM2.5 between G4 and RCPs as ISIMIP over the Beijing–
Tianjin province (Fig. 11g–h).

3.3.2 PM2.5 meteorological and emission controls in the
2060s

Next, we quantify the contribution of different meteorolog-
ical factors and PM2.5 emissions to 1PM2.5 for G4 (miti-
gation) in the 2060s and the 2010s (Fig. 12). Both ISIMIP
and WRF results show that the increase in temperature and
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Figure 8. The change in apparent temperature based on air temperature under three scenarios (G4, RCP4.5, and RCP8.5) in four ESMs
under ISIMIP (left column) and WRF (right column) for urban areas relative to the 2010s.

decrease in PM2.5 emissions play positive roles in reducing
the PM2.5 concentration. ISIMIP results (Fig. 12a–e) sug-
gest that the projected increase in temperature could explain
0 %–20 % of the decrease in PM2.5 concentration, and the
decrease in PM2.5 emissions could explain more than 90 %
of changes in PM2.5 concentration differences in most areas.
Changes in humidity and westerly winds (positive U wind)
do not cause significant changes in 1PM2.5, but projected
increases in southerly wind (positive V wind) are detrimen-
tal to the decrease in PM2.5 concentration and have a 0 %–
10 % negative effect on 1PM2.5 in Zhangjiakou. WRF re-

sults show a similar spatial pattern for the effect of tempera-
ture and emission on 1PM2.5 with ISIMIP results. Although
temperature is projected to increase over the whole domain
(Fig. S22), there are negative contributions to 1PM2.5 to
the north of Beijing due to an increase in PM2.5 caused by
the negative correlation between PM2.5 and its emissions
(Fig. S26). The ∼ 1 %–2 % increase in humidity leads to
∼ 10 % increase in PM2.5 concentration in the south of Bei-
jing (Fig. 12g), and 0.2–0.3 m s−1 decreases in U wind lead
to 0 %–10 % increases in the PM2.5 concentration in Zhangji-
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Figure 9. Ensemble mean differences in the annual number of days with AP> 32 ◦C (NdAP_32) between scenarios for 2060–2069: G4–
2010s (a, d), G4–RCP4.5, (b, e), and G4–RCP8.5 (c, f) based on the ISIMIP method and WRF. The 2010s mean the results simulated during
2008–2017. Stippling indicates grid points where differences or changes are not significant at the 5 % level according to the Wilcoxon signed
rank test. Corresponding ISIMIP results for each ESM are in Fig. S16, and WRF results are in Fig. S17.

akou (Fig. 12h). The changes in each factor in ISIMIP and
WRF results are shown in Figs. S21 and S22, respectively.

Now we explore the contribution of each meteorologi-
cal factor to 1PM2.5 between G4 (mitigation) and RCP4.5
(mitigation) in the 2060s (Fig. 13). The higher PM2.5 under
G4 is mainly caused by the lower temperature. In ISIMIP,
lower temperature explains more than 90 % (100 % in some
places) of the elevated PM2.5 relative to RCP4.5, although
the increase in humidity is also helpful in lowering PM2.5
in the western domain (Fig. 13a–b). Humidity can increase
suspended particle mass and coagulation, promoting depo-
sition (Li et al., 2015). The contribution of differences in
U wind and V wind to 1PM2.5 is insignificant (Fig. 13c–
d). In WRF, the projected lower temperatures explain more
than 70 % of the higher PM2.5 under G4 relative to RCP4.5
(Fig. 13e). Although the increase in southerly (V ) wind con-
tributes 10 %–20 % to the higher PM2.5 in the northern do-
main under HadGEM2-ES and BNU-ESM (Fig. S24), it is
insignificant in the ensemble (Fig. 13h). Decreased wester-
lies (U wind) explain between+100 % and−100 % of PM2.5
differences (Fig. 13g), since U -wind impacts vary spatially
(Fig. S26).

3.3.3 PM2.5 impact on health risks now and in the 2060s

Changes in RR of PM2.5 for the five diseases under the geo-
engineering and global warming climate scenarios and dif-
ferent emission scenarios during the 2060s relative to the
2010s for the Beijing–Tianjin province are shown in Fig. 14.
Present-day PM2.5-related RRs are 1.32 (1.30), 1.37 (1.35),
1.46 (1.43), 1.83 (1.80), and 2.03 (1.99) for chronic ob-
structive pulmonary disease (COPD), ischemic heart dis-
ease (IHD), lung cancer (LC), lung respiratory infection
(LRI), and stroke according to the ISIMIP (WRF) simula-

tions (Fig. 14a). RR of LRI is the highest and COPD is
the lowest for the five diseases, and WRF estimates of RR
are 0.02–0.03 lower than those of ISIMIP. In both the base-
line and mitigation emission scenarios, RRs will be lower
under G4, RCP4.5, and RCP8.5 compared with the 2010s.
Smaller RR reductions occur under G4 than under RCP4.5
and RCP8.5, and ISIMIP simulates larger reductions than
WRF. This is because the PM2.5 concentrations from ISIMIP
are reduced more than with WRF (Table S3). Under the base-
line emission scenario (Fig. 14b–d), the biggest reduction of
RR for LRI is 0.047 under RCP8.5 in ISIMIP, and RRs for
other diseases are projected to be reduced by no more than
0.02. Under the mitigation emission scenario (Fig. 14e–g),
reductions in RRs are 3–6 times greater.

4 Discussion

4.1 Apparent temperature

Both ISIMIP and WRF can reproduce the observed (CN05.1)
spatial patterns and seasonal variabilities of apparent temper-
ature in the region around Beijing. WRF shows warm biases
in AP during all months relative to CN05.1 due to warmer
temperatures in urban areas, with the exception of BNU-
ESM and HadGEM2-ES-driven summers (Fig. S13). Both
ISIMIP and WRF tend to overestimate population-weighted
NdAP_32 by 370 % and 590 %, respectively. These large dis-
crepancies are due to relatively small overestimates of the
likelihood of the tails of the probability distributions, which
leads to a dramatic increase in the frequency of extreme cli-
mate events (Dimri et al., 2018; Huang et al., 2021). AP
is about 1.5 ◦C warmer than 2 m temperature over the Bei-
jing and Tianjin urban areas in summer due to higher vapor
pressures amplifying warmer urban temperatures, and this is
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Figure 10. Probability density distributions of daily apparent temperature (AP) in summer (JJA) over Beijing–Tianjin urban areas for a
recent period (2008–2017) and the 2060s under G4, RCP4.5, and RCP8.5 scenarios from ISIMIP and WRF. results. The purple dotted lines
represent AP of 32 and 39 ◦C.

despite humidity being lower over the cities. Under high-
humidity conditions, a slight increase in temperature will
cause a large increase in heat stress (Li et al., 2018; Luo and
Lau, 2019). AP is nearly 4 ◦C colder than 2 m temperature in
winter due to wind speed (Fig. 2d). Differences between AP
and 2 m temperature (AP–T ) during summer are greater in
urban areas than neighboring rural areas.

The apparent temperatures in Beijing–Tianjin urban areas
under G4 in the 2060s are simulated to be 1 and 2.5 ◦C lower
than RCP4.5 and RCP8.5, although AP would be higher than
in the recent past. The cooling effect of G4 relative to RCP4.5
and RCP8.5 is the greatest under HadGEM2-ES (Figs. S14,
S15) due to the ESM having the largest temperature differ-
ences between scenarios (Wang et al., 2022). WRF down-
scaling produces reduced seasonality in AP compared with
ISIMIP, and WRF produces relatively cooler summers and
warmer winters than ISIMIP, so there are fewer differences
in apparent temperature ranges (Fig. 15). Differences in AP

between G4 and the RCP scenarios are mainly driven by tem-
perature. In all scenarios and downscalings AP rises faster
than the temperature due to decreased wind speeds in the fu-
ture (Li et al., 2018; Zhu et al., 2021) but mainly because
of rises in vapor pressure driven by rising temperatures. This
effect occurs despite the general drying expected under solar
geoengineering (Bala et al., 2008; Yu et al., 2015).

The NdAP_32 under G4 is projected to decrease by
8.6 d yr−1 by ISIMIP and 6.3 d yr−1 by WRF relative to
RCP4.5 for the Beijing–Tianjin province. Much larger reduc-
tions in NdAP_32 of 33.5 d yr−1 (ISIMIP) and 19.6 d yr−1

(WRF) are projected relative to RCP8.5. Differences be-
tween scenarios in the frequency of dangerously hot days
are far larger using ISIMIP statistical downscaling than us-
ing WRF. This is another impact of the reduced seasonality
of WRF compared with ISIMIP (Fig. 15).

The higher-resolution WRF simulation produces a much
larger range of apparent temperatures across the domain than
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Figure 11. Spatial patterns of ensemble mean PM2.5 concentration difference (µg m−3) between mitigation under G4 in the 2060s and the
reference (a, e), between mitigation and baseline under G4 in the 2060s (b, f), between G4 and RCP4.5 under the mitigation scenario in the
2060s (c, g), and between G4 and RCP8.5 under the mitigation scenario in the 2060s (d, h) based on ISIMIP (a–d) and WRF (e–h) results.
Excessive collinearity variables have been removed (Fig. S18 shows the results without this procedure). Stippling indicates grid points where
differences or changes are not significant at the 5 % significance level according to the Wilcoxon signed rank test.

Figure 12. Contribution of climate factors (temperature – T , humidity – H , zonal wind — U , meridional wind – V ) and emissions (E) to
changes in monthly PM2.5 concentration (1PM2.5) in the 2060s under G4 (mitigation) relative to the 2010s. Top panels (a–e) are ISIMIP
results, and bottom panels (f–j) are WRF results. Stippling indicates that the changes are insignificant at the 5 % significance level in the
Wilcoxon test. The grey areas represent the collinearity in the MLR in panels (a), (f), and (h).

CN05.1 and ISIMIP downscaling. This increased variabil-
ity makes reaching a statistical significance threshold more
challenging for WRF than ISIMIP results. Despite this, the
ESM-driven differences in WRF output are fewer than from
ISIMIP, reflecting the physically based processes in the dy-
namic WRF simulation. This reduces the impact of differ-
ences in ESM forcing at the domain boundaries with WRF
compared with the statistical bias-correction and downscal-
ing methods. Although there are some uncertainties between
models and downscaling methods, G4 SAI can not only re-
duce the mean apparent temperature but also decrease the
probability of PDF tails (extreme events) in summer.

4.2 PM2.5

We established a set of spatially gridded MLR models based
on the four ESMs’ downscaled variables under ISIMIP and
WRF. The meteorological factors impact PM2.5 in complex
ways, but the simple spatially gridded MLR models display

enough skill to make some illustrative projections of future
PM2.5, explaining about 70 % of the variance during the his-
torical period. PM2.5 concentration is correlated with emis-
sions and anticorrelated with temperature in most parts of the
domain (Figs. S25–S26). Increased turbulence increases dif-
fusion of PM2.5 (Yang et al., 2016), and higher temperatures
increase evaporation losses (Liu et al., 2015) of ammonium
nitrate (Chuang et al., 2017) and other components (Wang
et al., 2006). Humidity may have both positive and negative
effects on PM2.5 (Chen et al., 2020). It causes more water va-
por to adhere to the surface of PM2.5, thereby increasing its
mass concentration and facilitating aerosol growth (Cheng
et al., 2017; Liao et al., 2017). However, when the humidity
exceeds a certain threshold, coagulation and particle mass
increase rapidly, promoting deposition (Li et al., 2015). So,
the slope coefficients between PM2.5 and humidity are posi-
tive in low-humidity areas, including the southern plain and
the Beijing–Tianjin province, but negative in some northern
mountain areas (Figs. S25, S26).
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Figure 13. Contribution of climate factors (as in Fig. 12) to changes in monthly PM2.5 concentration in the 2060s under G4 with aerosol
mitigation relative to the 2060s under RCP4.5 with aerosol mitigation. Top panels (a–e) are ISIMIP results, and bottom panels (f–j) are WRF
results. Stippling indicates that the changes are insignificant at the 5 % significance level in the Wilcoxon test. The grey areas represent the
collinearity in the MLR in panels (a), (f), and (h).

There are large spatial differences in wind speed and direc-
tion impacts on PM2.5. Yang et al. (2016) found that weaker
northerly and westerly winds tend to increase the PM2.5 con-
centration in northern and eastern China, respectively. The
effects of wind direction depend on the distribution of emit-
ted PM2.5 and the condition of the underlying surface (Chen
et al., 2020). Most sources of PM2.5 lie to the south of our
domain, and relatively clean conditions prevail to the north,
so northerly winds tend to advect clean air, while souther-
lies bring high concentrations of aerosols. Weak winds tend
to increase PM2.5 and smog formation due to sinking air and
weak diffusion (Ren et al., 2016; Yang et al., 2018).

Xu et al. (2021) projected that 2030 PM2.5 concentrations
will decrease by 8.8 % and 5.5 % under RCP4.5 and RCP8.5,
respectively, relative to 2015. Y. Wang et al. (2021) also pro-
jected decreasing trends in China under RCP4.5 and RCP8.5
during 2030–2050. There were seasonal changes in PM2.5
concentration differences between two RCPs (RCP4.5 and
8.5) and the historical scenario near the Bohai Sea (Dou et
al., 2021). However, there are also some simulations wherein
PM2.5 concentrations increase in warmer climates. Hong et
al. (2019) suggest that annual mean PM2.5 concentrations
will increase by 1–8 µg m−3 in an area including Beijing
and Tianjin under RCP4.5 during 2046–2050 compared with
2006–2010. These inconsistent responses are mainly caused
by the differences in the selection of ESMs, chemical trans-
port models, and climate–emission scenarios. Different RCP
scenarios not only correspond to different future climate
states, but also have different anthropogenic emissions of air
pollutants. In our study, we do not consider the PM2.5 emis-
sion differences between RCP4.5 and RCP8.5, and we in-
stead applied the ECLIPSE PM2.5 emission scenarios in our
MLR projection.

Emissions reductions are expected to play the dominant
role in the decrease in PM2.5 concentrations under G4 aerosol

mitigation in the 2060s (Fig. 12). Meteorological changes un-
der the different future scenarios make much smaller changes
as evidenced by the scenarios using the baseline – that is,
present-day PM2.5 emissions, with decreases in mean annual
concentrations of 1.0 (1.3), 1.8 (2.0), and 3.3 (3.2) µg m−3

over the Beijing–Tianjin province under G4, RCP4.5, and
RCP8.5 with WRF (ISIMIP) (Table S3), which are mainly
caused by the temperature increases (Fig. 13). The negative
relationships between emissions and the PM2.5 concentration
result in the increase in PM2.5 under G4 (mitigation) rela-
tive to the 2010s in the north of Beijing with WRF. This
may be due to changes in PM2.5 out of the domain being
opposite to those in the domain during the MLR fitting pe-
riod, since relocation of polluting sources from the urban ar-
eas mainly to the west occurred over the calibration period.
The accuracy of PM2.5 emission data is also crucial for train-
ing MLR models, and PM2.5 data were sparse before 2013,
relying on reconstructions based on satellite optical depth
estimates. Although both increases in temperature and de-
creases in emissions explain more than 90 % of the decrease
in PM2.5 in most areas, there are large spatial differences due
to wind and humidity. On the one hand, there is uncertainty
in the differences in changes in wind speed and humidity
between different ESMs and downscaling methods; on the
other hand, the complex physical relationship between them
and PM2.5 also increases uncertainties. Reductions in PM2.5
in the future are projected to decrease PM2.5-related health
issues, although the effects on various diseases are differ-
ent. Changes in PM2.5-related risk between G4 and RCPs
are from 1 %–3 %, with PM2.5 emissions policy dominating
differences over the climate scenario.

There are some differences in projecting PM2.5 concen-
trations between WRF and ISIMIP methods. Compared to
the 2010s reference, PM2.5 concentrations in ISIMIP are pro-
jected to decrease more than using WRF in G4 under the mit-
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Figure 14. Average population-weighted relative risks of five PM2.5-related diseases in the 2010s (a) and changes between G4 and the 2010s
(b, e), between RCP4.5 and the 2010s (c, f), and between RCP8.5 and the 2010s (d, g) in the Beijing–Tianjin province based on the ISIMIP
and WRF results, respectively. PM2.5 concentration is based on the baseline emissions under G4, RCP4.5, and RCP8.5 in the middle three
panels (b–d), and it is based on the mitigation emissions under G4, RCP4.5, and RCP8.5 in the bottom three panels (e–g).

igation scenario during the 2060s over the Tianjin province
(Fig. 11a, e). However, the spatial patterns of changes in
PM2.5 concentration between G4 and two RCPs (RCP4.5
and 8.5) under the mitigation scenario during the 2060s are
similar (Fig. 11c–d, g–h). This means that the effects of dif-
ferent downscaled methods on projecting PM2.5 are small
if we only consider climate change alone without consid-
ering emissions changes. Due to the larger regression coef-
ficient of emissions in the MLR under the ISIMIP method
(Figs. S25, S26), the negative changes in PM2.5 concentra-
tion are larger between mitigation and baseline under G4 dur-
ing the 2060s than that under the WRF method. Correspond-
ingly, the ISIMIP method has a greater reduction in PM2.5-
related RR than WRF under three future climate scenarios
during the 2060s.

Eastham et al. (2018) deduced from experiments using
1 Tg yr−1 SAI in a coupled chemistry–transport model di-
rectly simulating atmospheric chemistry, transport, radiative
transfer of UV, emissions, and loss processes that per unit of
mass emitted, surface-level emissions of sulfate result in 25
times greater population exposure to PM2.5 than emitting the
same aerosol into the stratosphere. The G4 experiment spec-

ifies a 5 Tg yr−1 injection rate, which over our domain would
equate to 1450 t yr−1 if it was deposited uniformly globally
(which it certainly would not be). Reducing this by a factor
of 1/25 amounts to 58 t yr−1, which can be compared with
present PM2.5 emissions of around 3.3×105 t yr−1 in our do-
main. If we consider the aerosol deposition under G4 scenar-
ios, the PM2.5 concentration will be 0–1 µg m−3 higher than
that without due to deposition of the SAI aerosols (Fig. S27),
and RR is projected to increase by 0.01 % for the Beijing–
Tianjin province (Table S4). This comparison suggests that
tropospheric emissions will be much more important for hu-
man health in our domain than from the SAI specified by G4.

The most important change in PM2.5 will come from
emissions reductions, with the different weather conditions
under both G4 and RCP scenarios making relatively little
practical difference in concentrations. PM2.5 concentration
is expected to decrease significantly (ISIMIP: −7.6 µg m−3,
WRF: −5.4 µg m−3) in the Beijing–Tianjin province, but
they will still not meet Chinese or international standards.
The temperature under G4 is lower than that under RCP4.5
and RCP8.5 scenarios, which makes the PM2.5 concentration
under G4 higher. But the difference in PM2.5 between the two
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Figure 15. Seasonal cycles of apparent temperature from MIROC-ESM, MIROC-ESM-CHEM, HadGEM2-ES, and BNU-ESM under G4,
RCP4.5, and RCP8.5 in Beijing–Tianjin urban areas during the 2060s based on ISIMIP (red) and WRF (black) methods.

is small and even within uncertainty due to projected differ-
ences in humidity and wind. Potentially improved estimates
from more complex models such as WRF-Chem, CMAQ,
and GEOS-Chem over the simple MLR methods used here
will be of limited value unless the differences between the
ESMs driving these models are reduced. It can be confirmed
that emission policies based on the 13th Five-Year Plan are
not enough, and higher emission standards need to be devel-
oped for a healthy living environment.

Our study did not consider the impacts of socioeconomic
pathways on PM2.5 future emissions; instead, we explore
the meteorological differences between the SAI G4 scenario
and the greenhouse gas scenarios (RCP4.5 and RCP8.5) in
terms of the impact on PM2.5 concentrations. PM2.5 emis-
sions were defined by the uncontrolled scenario (baseline)

and a scenario in which technological intervention (mitiga-
tion) reduces emissions. There are some limitations in our
study. Firstly, the HTAP_V3 dataset only includes anthro-
pogenic PM2.5 emissions, not natural PM2.5 emissions. Nat-
ural PM2.5 will also change in the future under changing cli-
mate. The sources of natural PM2.5 include the sandstorms
that sometimes occur in spring as extreme winds mobilize
dry unvegetated soils. These relatively extreme conditions
are difficult to simulate in ESMs and subject to land use pol-
icy – e.g., the numerous ecosystem service measures under-
taken by China over the last 5 decades (Miao et al., 2015).
Secondly, although PM2.5 concentration includes both pri-
mary and secondary PM2.5 during model training, we do not
consider the precursor gases for secondary PM2.5 directly.
The sensitivity of MLR may be diminished at high PM2.5 val-
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ues when secondary PM2.5 dominates the variability of total
PM2.5 (Upadhyay et al., 2018). Thirdly, we only consider the
effect of dominant near-surface meteorological variables on
PM2.5. However, the vertical transport of pollutants related
to vertical atmospheric stability should not be ignored (Lo et
al., 2006; Wu et al., 2005), and this may contribute to the dif-
ferences in the RCP4.5 scenario from our MLR model and
more sophisticated simulations (Fig. S7). Finally, although
it is insignificant for the Beijing and Tianjin provinces, the
MLR model suffers from collinearity problems in some ar-
eas. These factors play smaller roles as we are mainly con-
sidering changes in PM2.5 concentrations between different
climate scenarios. Nevertheless, projection for changes in
PM2.5 between SAI scenarios and per greenhouse gas sce-
nario would be valuable for global air quality impacts from
geoengineering.

5 Conclusions

Our study on thermal comfort and aerosol pollution under
geoengineering scenarios for the Beijing megalopolis may be
useful across the developing world, which is expected to suf-
fer from disproportionate climate impact damage relative to
the global mean, while also undergoing rapid urbanization.
Assessing health impacts and mortality due to heat stress
and PM2.5 under greenhouse gas scenarios should consider
urbanization and the change to concrete surfaces from veg-
etation that leads to differences in heat capacities, rates of
evapotranspiration, and hence humidity and apparent tem-
perature. These require downscaled analyses, accurate me-
teorological and high-resolution land surface datasets, and
industrial development scenarios.

In our analysis we assumed the urban area did not change
over time and also that the population remains distributed
as in the recent past. This may be reasonable in the highly
developed and relatively mature greater Beijing–Tianjin re-
gion but should be considered in rapidly urbanizing regions
elsewhere. There certainly will be changes over time in the
radiative cooling from surface pollution sources. PM2.5 is a
health issue in many developing regions (Ran et al., 2023),
but as wealth increases efforts to curb air pollution generally
clean the air. This has clear health benefits but also removes
aerosols from the troposphere that cool the surface. The ur-
ban areas that have higher apparent temperatures at present
are also the areas with the greatest aerosol load and hence
the greatest cooling. Once direct radiation is removed, air
temperatures and apparent temperatures will all rise by sev-
eral degrees (Wang et al., 2016). So, a future more compre-
hensive health impact study would include both the negative
health impacts of aerosol pollution and the potential cooling
effects those aerosols produce. Additionally, the formulation
of apparent temperature used does not consider the effect of
radiation on human comfort (Kong and Huber, 2022). When
PM2.5 levels are high there is no shade because the sky is

milky white; similarly, SAI will brighten the sky (Kravitz et
al., 2012). Comfort is increased in clear-sky conditions when
shade is readily found.

The changes simulated to relative risk from increased
PM2.5 under the G4 SAI scenario are about 1 %–3 % worse
than under RCP4.5, mainly because of lower temperatures
under G4. The difference this would make to the overall
health burden under SAI depends on the range of other im-
pacts that include changes in apparent temperature we dis-
cuss. G4 reduces the number of days with AP> 32 (when ex-
treme caution is advised) by 6–8 per year relative to RCP4.5
and by 20–34 relative to RCP8.5. But G4 itself will still in-
crease these extreme caution days by 1–20 relative to condi-
tions in the 2010s. Lowering PM2.5 emissions will increase
ground temperatures, and the associated risk of dangerous
apparent temperatures will also increase rapidly as the distri-
bution of temperatures is shifted, making presently rare hot
events into much more frequent heat waves.
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