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1. Introduction1

The continuous wavelet transform possesses the ability to construct a time-2

frequency representation of a time series that offers very good time and frequency3

localization, so wavelet transforms can analyze localized intermittent periodicities4

of climatic time series.1,7,8 The relative resolution in time and frequency space5

depends on the wavelet chosen. Many climatic time series have been analyzed with6

the Morlet wavelet.2,3,5 which is roughly equally localized in time and frequency.7

However, the Haar wavelet which we discuss has not been previously used in this8

respect.9

Physical interpretation of climatic time series requires statistical significant test-10

ing against a null hypothesis of some noise model. Different from regular signal11

analysis, climatic time series analysis often use red noise as noise model.4 A sim-12

ple model for red noise is the univariate lag-1 autoregressive (AR(1)) process. By13

comparing the difference of wavelet power spectra of real climatic series and AR(1)14

red noise, one can extract the intrinsic features of climatic time series. To date15

significance testing has been based on an empirical formula for the Morlet wavelet16

power spectra of AR(1) red noise.2,3,5
17

In this paper, we will focus on Haar wavelet. We will give an analytic formula of18

the distribution of Haar wavelet power spectra for an AR(1) red noise in a rigorous19

statistical framework (see Sec. 2). The relation between scale a and Fourier period T20

for the Morlet wavelet is a = 0.97T .5 However, for Haar wavelet, the corresponding21

formula is a = 0.3710T (see Appendix A). Since for any time series of time step δt22

and total length Nδt, the range of scales is from the smallest resolvable scale 2δt23

to the largest scale Nδt in wavelet-based time series analysis, by using the Haar24

wavelet analysis, one can extract more low frequency intrinsic information. At the25

end of this paper, we use Haar wavelet to do the statistical significance test of the26

Arctic Oscillation (AO) and discover a great change in fundamental properties of27

the AO, commonly called a regime shift or tripping point.28

2. Haar Wavelet Power Spectrum Distribution29

for AR(1) Time Series30

Different from regular signal analysis, climatic time series analysis often use red
noise as noise model.4 A simple model for red noise is the univariate lag-1 autore-
gressive (AR(1)) process. A discrete random process {xn}N−1

0 is called an AR(1)
time series with the parameter α if

xn = αxn−1 + Zn, n = 1, . . . , N − 1 and x0 = 0,

where the parameter 0 ≤ α < 1 and {Zn}∞1 is the white noise, i.e. they are indepen-
dent normal distributed variables with variance σ2. From this, we can successively
obtain that

xn =
n∑

k=1

αn−k Zk (2.1)
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and the expectation

E[ xn ] =
n∑

k=1

αn−kE[ Zk ] = 0.

Therefore, each xn is a Gaussian random variable with mean 0. Let H(x) be the
Haar function:

H(x) =


1, 0 < x ≤ 1

2
,

−1, −1
2

< x < 0,

0, otherwise.

(2.2)

The wavelet transform Wν(s) of AR(1) time series {xn}N−1
0 associated with

H(x) is defined ordinarily as2,3:√
s

δt
Wν(s) =

N−1∑
n=0

xn H

(
(n − ν)δt

s

)
, (2.3)

where ν is the time parameter and s is the scaling parameter and δt is a sample
period of {xn}N−1

0 . By (2.2),

H

(
(n − ν)δt

s

)
=


1

(
ν < n ≤ ν +

s

2δt

)
,

−1
(
ν − s

2δt
< n < ν

)
,

0
(
n = ν or n ≤ ν − s

2δt
or n > ν +

s

2δt

)
.

(2.4)

We choose ν, s such that
s

2δt
≤ ν ≤ N − 1 − s

2δt
. (2.5)

By (2.3), √
s

δt
E[Wν(s)] =

N−1∑
n=0

E[xn]H
(

(n − ν)δt
s

)
= 0.

Therefore, Wν(s) is a Gaussian random variable with mean 0. To obtain the distri-
bution of the power spectrum |Wν(s)|2, we only need to compute the variance of
Wν(s). Note that

Var(Wν(s)) = E[(Wν(s))2] − (E[Wν(s)])2 = E[(Wν(s))2].

From this and (2.3), we have

s

δt
Var(Wν(s)) = E

(N−1∑
n=0

xnH

(
(n − ν)δt

s

))2


=
N−1∑

n,m=0

E[xnxm]H
(

(n − ν)δt
s

)
H

(
(m − ν)δt

s

)
. (2.6)
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Denote s∗ = s
2δt . By (2.5), we have

ν − s∗ ≥ 0 and ν + s∗ ≤ N − 1.

From this and (2.4), by (2.6), we get

2s∗Var(Wν(s)) =
ν+s∗∑

n,m=ν−s∗
E[xnxm]H

(
m − ν

2s∗

)
H

(
n − ν

2s∗

)
. (2.7)

Since {Zn}∞1 is white noise with variance σ2,

E[ZkZl] = 0(k �= l) and E[Z2
k ] = σ2.

By (2.1), we get

E[xnxm] = E

[(
m∑

k=1

αm−k Zk

)(
n∑

k=1

αn−k Zk

)]

=
λmn∑
k=1

αn−kαm−kE[Z2
k ]

= σ2αn+m
λmn∑
k=1

α−2k =
σ2αn+m(1 − α−2λmn)

α2 − 1
,

where λmn = min{n, m}. From this, we get that(
α2 − 1

σ2

)
E[xnxm] =

{
αm+n − αn−m, m ≤ n,

αm+n − αm−n, m > n.
(2.8)

So, we get (
α2 − 1

σ2

)
E[ xnxm ] = αm+n − α|m−n|.

From this and (2.7), we have

−2s∗
(

α2 − 1
σ2

)
Var(Wν(s)) =

ν+s∗∑
n,m=ν−s∗

(α|m−n| − αm+n)H
(

m − ν

2s∗

)

×H

(
n − ν

2s∗

)
= J − J̃ , (2.9)

where

J =
ν+s∗∑

n,m=ν−s∗
α|m−n|H

(
m − ν

2s∗

)
H

(
n − ν

2s∗

)
and

J̃ =
ν+s∗∑

n,m=ν−s∗
αm+n H

(
m − ν

2s∗

)
H

(
n − ν

2s∗

)
. (2.10)

We first compute J .1
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By (2.4), we divide J into four sums:

J =

(
ν−1∑

n,m=ν−s∗
−

ν−1∑
m=ν−s∗

ν+s∗∑
n=ν+1

−
ν+s∗∑

m=ν+1

ν−1∑
n=ν−s∗

+
ν+s∗∑

n,m=ν+1

)
α|m−n|

=: J1 − J2 − J3 + J4. (2.11)

We compute each sum. For J1:

J1 =

(
ν−1∑

m=ν−s∗

m∑
n=ν−s∗

+
ν−1∑

m=ν−s∗

ν−1∑
n=m+1

)
α|m−n| = J11 + J12,

where

J11 =
ν−1∑

m=ν−s∗
αm

(
m∑

n=ν−s∗
α−n

)

=
ν−1∑

m=ν−s∗

αm(α−ν+s∗ − α−m−1)
1 − α−1

=
α−ν+s∗

1 − α−1

ν−1∑
m=ν−s∗

αm −
ν−1∑

m=ν−s∗

α−1

1 − α−1

= − (α−ν+s∗
)(αν − αν−s∗

)
(1 − α)(1 − α−1)

− s∗

α(1 − α−1)
=

1 − αs∗

(1 − α−1)(1 − α)
+

s∗

1 − α

and

J12 =
ν−1∑

m=ν−s∗
α−m

(
ν−1∑

n=m+1

αn

)

=
ν−1∑

m=ν−s∗

α−m(αm+1 − αν)
1 − α

= − αν

1 − α

ν−1∑
m=ν−s∗

α−m +
1

1 − α

ν−1∑
m=ν−s∗

α

= −αν(α−ν+s∗ − α−ν)
(1 − α)(1 − α−1)

+
αs∗

1 − α
=

1 − αs∗

(1 − α)(1 − α−1)
+

αs∗

1 − α
.

Therefore, we have

J1 = J11 + J12 =
2(1 − αs∗

)
(1 − α)(1 − α−1)

+
(1 + α)s∗

1 − α
.

For J4:

J4 =
ν+s∗∑

m=ν+1

(
m∑

n=ν+1

+
ν+s∗∑

n=m+1

)
α|m−n| = J41 + J42,

where

J41 =
ν+s∗∑

m=ν+1

αm

(
m∑

n=ν+1

α−n

)
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=
ν+s∗∑

m=ν+1

αm(α−ν−1 − α−m−1)
1 − α−1

=
α−ν−1

1 − α−1

ν+s∗∑
m=ν+1

αm −
ν+s∗∑

m=ν+1

α−1

1 − α−1

=
α−ν−1(αν+1 − αν+s∗+1)

(1 − α)(1 − α−1)
− s∗

α(1 − α−1)
=

1 − αs∗

(1 − α)(1 − α−1)
+

s∗

1 − α

and

J42 =
ν+s∗∑

m=ν+1

α−m

(
ν+s∗∑

n=m+1

αn

)

=
ν+s∗∑

m=ν+1

α−m(αm+1 − αν+s∗+1)
1 − α

= −αν+s∗+1

1 − α

ν+s∗∑
m=ν+1

α−m +
ν+s∗∑

m=ν+1

α

1 − α

= −αν+s∗+1(α−ν−1 − α−ν−s∗−1)
(1 − α)(1 − α−1)

+
αs∗

1 − α
= − αs∗ − 1

(1 − α)(1 − α−1)
+

αs∗

1 − α
,

it follows that

J4 = J41 + J42 =
(1 + α)s∗

1 − α
+

2(1 − αs∗
)

(1 − α)(1 − α−1)
.

Furthermore,

J1 + J4 =
4(1 − αs∗

)
(1 − α)(1 − α−1)

+
2(1 + α)s∗

1 − α
.

Finally, for J2 and J3:

J2 =

(
ν−1∑

m=ν−s∗
α−m

)(
ν+s∗∑

n=ν+1

αn

)

=
(

α−ν+s∗ − α−ν

1 − α−1

)(
αν+1 − αν+s∗+1

1 − α

)
= − α(αs∗ − 1)2

(1 − α)(1 − α−1)

and

J3 =

(
ν+s∗∑

m=ν+1

αm

)(
ν−1∑

m=ν−s∗
α−n

)
= J2.

We obtain by (2.11) that

J = J1 − J2 − J3 + J4

=
4(1 − αs∗

)
(1 − α)(1 − α−1)

+
2α(αs∗ − 1)2

(1 − α)(1 − α−1)
+

2s∗(1 + α)
1 − α

=
2s∗(1 − α2) − 4α(1 − αs∗

) − 2α2(1 − αs∗
)2

(1 − α)2
=: σ2

H . (2.12)

1450020-6
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Next, we compute J̃ . By (2.4) and (2.10), we can divide J̃ into four sums:

J̃ =

(
ν−1∑

m,n=ν−s∗
−

ν−1∑
m=ν−s∗

ν+s∗∑
n=ν+1

−
ν+s∗∑

m=ν+1

ν−1∑
n=ν−s∗

+
ν+s∗∑

m,n=ν+1

)
αm+n

= J̃1 − J̃2 − J̃3 + J̃4,

where

J̃1 =

(
ν−1∑

m=ν−s∗
αm

)(
ν−1∑

n=ν−s∗
αn

)
=
(

αν−s∗ − αν

1 − α

)2

,

J̃4 =

(
ν+s∗∑

m=ν+1

αm

)(
ν+s∗∑

n=ν+1

αn

)
=
(

αν+1 − αν+s∗+1

1 − α

)2

and

J̃2 = J̃3 =

(
ν−1∑

m=ν−s∗
αm

)(
ν+s∗∑

n=ν+1

αn

)
=
(

αν−s∗ − αν

1 − α

)(
αν+1 − αν+s∗+1

1 − α

)
.

Therefore,

J̃ = J̃1 − J̃2 − J̃3 + J̃4

=
α2ν

(1 − α)2
((α−s∗ − 1)2 + α2(1 − αs∗

)2 − 2α(α−s∗ − 1)(1 − αs∗
))

= α2ν (1 − αs∗
)2(α−s∗− α)2

(1 − α)2
=: σ̃2

H . (2.13)

Finally, by (2.10)–(2.13), we get

2s∗
(

1 − α2

σ2

)
Var(Wν(s)) = J − J̃ = σ2

H − σ̃2
H ,

where σH and σ̃H are stated in (2.12) and (2.13), respectively. From this, we deduce
that the Haar wavelet transform Wν(s) of {xn}N−1

0 is distributed as

σ
√

σ2
H − σ̃2

H√
2s∗(1 − α2)

X,

where X is a normal distribution with mean 0 and variance 1.1

From this, we get the following theorem.2

Theorem 2.1. Let {xn}N−1
0 be an AR(1) time series and Wν(s) be its Haar wavelet

transform. Then the Haar wavelet power spectrum of {xn}N−1
0

|Wν(s)|2 ⇒ σ2(σ2
H − σ̃2

H)
2s∗(1 − α2)

χ2
1,

1450020-7
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where “⇒” indicates “is distributed as” and χ2
1 is the chi-square distribution with

one degree of freedom, s∗ = s
2δt , and

σ2
H − σ̃2

H =
2s∗(1 − α2) − 4α(1 − αs∗

) − 2α2(1 − αs∗
)2

(1 − α)2

−α2ν (1 − αs∗
)2(α−s∗ − α)2

(1 − α)2
.

Remark 2.1. Since 0 ≤ α < 1, when ν is sufficiently large such that α2ν ≈ 0, the
term

σ̃H ≈ 0.

The above formula is simplified as follows:

|Wν(s)|2 ⇒ σ2σ2
H

2s∗(1 − α2)
χ2

1,

where σ2
H is stated in (2.12).1

If {xn}N−1
0 is a white noise with variance σ2, i.e. α = 0, then σ2

H − σ̃2
H = 2s∗

and

|Wν(s)|2 ⇒ σ2χ2
1.

3. Numerical Experiment2

The AO is a key aspect of climate variability in the Northern Hemisphere. The AO is3

defined as the leading empirical orthogonal function (EOF) of Northern Hemisphere4

1850 1900 1950 2000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time

Fig. 1. The standardized time series of winter AO index.
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Time
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20

40
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140

COI
COI

Fig. 2. Haar wavelet power spectrum of AO index. The thick black contour designates the 5%
significance level against red noise. In addition, the COI also be marked (color online).

sea level pressure anomalies pole ward of 20◦N,6 and characterized by an exchange1

of atmospheric mass between the Arctic and middle latitudes. Figure 1 shows the2

winter AO index (December–February 1851–1997). We will use Haar wavelet to3

analyze AO index, i.e. we will compute the Haar wavelet power spectra of the AO4

index. Since the AO index is a finite-length time series, errors in wavelet transform5

will occur at the beginning and end of the wavelet power spectrum. The Cone6

of influence (COI) is the region of the wavelet transform in which edge effects7

become important. Here, we will not research wavelet power spectrum in COI.8

Using Theorem 2.1, we can extract the instinct information of time series from9

background red noise. Figure 2 shows Haar wavelet power spectrum of AO index.10

The thick black contour designates the 5% significance level against red noise. Most11

regions of significance appear abruptly about 1970. Since the Haar wavelet is very12

broadband, this discovers a great change in fundamental properties of the AO,13

commonly called a regime shift or tripping point.14
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Appendix A. Haar Wavelet Scale and Fourier Wavelength21

In order to give better physical interpretation, one needs to transfer wavelet scale22

to Fourier wavelength. We will use Meyers’ method5 to obtain the relationship23

1450020-9
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between the equivalent Fourier period T and the wavelet scale a. This relationship1

estimated by computing the wavelet power spectrum of a cosine wave of a known2

frequency and then finding the scale a at which the wavelet power spectrum reaches3

its maximum. In detail:4

Let x(t) = cosωt. Then

W (a, b) =
1√
a

∫ ∞

−∞
cosωtH

(
t − b

a

)
dt =

√
a

∫ 1
2

− 1
2

cosω(at + b)H(t)dt

= − 1
ω
√

a

(
sin ω

(a

2
+ b
)

+ sin ω
(a

2
− b
))

= − 2
ω
√

a
sin

aω

2
cos bω

and so

|W (a, b)|2 =
4

ω2a
sin2 aω

2
cos2 bω.

When ω is such that sin ωa
2 = 0 or tan ωa

2 = ωa, we have

d

da
|W (a, b)|2 = 0.

From this, we deduce that the power spectrum |Wν(s)|2 attains the maximal value
at a ≈ 2.3311

ω . Note that ω = 2π
T , where T is the Fourier wavelength. So we obtain

the relationship between the scale parameter and the Fourier wavelength as follows:

a ≈ 2.3311
2π

T = 0.3710T.

The relation between scale a and Fourier period T for the Morlet wavelet is5

a = 0.97T .5 However, for Haar wavelet, the corresponding formula is a = 0.3710T .6

Since for any time series of time step δt and total length Nδt, the range of scales7

is from the smallest resolvable scale 2δt to the largest scale Nδt in wavelet-based8

time series analysis, by using the Haar wavelet analysis one can extract more low9

frequency intrinsic information.10
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