A Continuous 770-Year Record of Volcanic Activity From East Antarctica

JOHN C. MOORE

British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom

HIDEKI NARITA AND NORIKAZU MAENO

Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan

1. INTRODUCTION

Major volcanic eruptions often produce large amounts of SO₂ and other gases. The SO₂ is converted to sulphuric acid aerosol which is deposited globally. A violent eruption can eject SO₂ into the stratosphere and produce acid precipitation for several years after the eruption; less violent eruptions affect only the troposphere and fallout of the acid aerosol is much quicker. Volcanic eruptions that inject aerosols into the stratosphere can probably affect global climate in the short term [Lamb, 1970, Rampino and Self; 1982], primarily through reduction in atmospheric transmissivity. The acid precipitation from eruptions is recorded in Antarctic precipitation as peaks superimposed on an irregular nonvolcanic acid background. Atmospheric circulation patterns restrict interhemispheric transport, and this means that only volcanic eruptions from south of about 20°N produce changes in acid fall out in Antarctica. Previously, the volcanic record in Antarctica was well documented to about 1760 A.D. [Legrand and Delmas, 1987]; this study extends the record back to about 1220 A.D.

East Dronning Maud Land is a large elevated ice plateau containing the second highest dome in Antarctica. Kamiyama et al. [1990] show that the area is not unduly influenced by local cyclonic storm activity, and precipitation may be representative of a wide area of East Antarctica. The G 15 drilling site (71°12'S, 45°59'W, see Figure 1) was located at an elevation of 2544 m, mean annual air temperature -38.3°C. A 100-m core was drilled in January 1984 using an electromechanical drill. The core was cut into 0.5-m sections and returned to Japan where it was stored at -15°C in the Institute of Low Temperature Science. It was cut longitudinally in half; half of the core was used for stable isotope, density, and other measurements. The remainder was dielectrically profiled (DEP) at -21°C in October 1989; temperature variations during the course of the measurements were limited to 1°C.

The DEP technique has been described by Moore and Paren [1987] and Moore and Maeno [1991]. It involves the measurement of capacitance and conductance of ice cores at frequencies between 20 Hz and 300 kHz with an accuracy of about 3%. Spatial resolution of the system depends on the width of the electrodes used; 5-cm electrodes were used here. The high-frequency limit of conductivity, ωₚ, has been shown to be linearly related to both the acid and neutral salt concentrations in the ice [Moore et al., 1989]. While these earlier studies analyzed complete cores, profiling of half cores should present no problems as the geometry of the electric field is identical in both configurations.

2. PRELIMINARY DATING OF THE CORE

The snow accumulation rate on the Mizuho Plateau is known to be very variable. Stake measurements over a period of several years show an accumulation rate of 0.1-0.15 m water yr⁻¹. At Mizuho station (Figure 1) a 700-m ice core has been recovered which shows periods when several years of accumulation have been lost. Kamiyama et al. [1990] report that in East Dronning Maud Land the effects of katabatic winds appear at altitudes below 3600 m, resulting in the loss of surface snow. This is a common problem in dating cores where the accumulation rate is below 0.1 m yr⁻¹.

Density measurements on the top 40 m of the core were made on samples of typically 60 cm². Below this depth the density was measured on 0.5-m lengths of the core. We have used the firm densification model of Herren and Langway [1980] to model the density data. The model predicts that plots of ln(ρ/ρ₀) vs. p, where ρ₀ is the density of solid ice 0.917 Mg m⁻³ and ρ is the density of firm, versus depth consist of linear segments. The first segment is for ρ < 0.55 Mg m⁻³, the second is a shallower slope for 0.55 Mg m⁻³ < ρ < 0.82 Mg m⁻³, corresponding to the first and second stages of densification. Pore close off occurs at p = 0.82-0.84 Mg m⁻³, below which densification occurs more slowly. The accumulation rate A can be found from the slope of the second stage of densification, b as

\[A = (p/b)^2 \]
occurring naturally in ice from central Antarctica. This contamination is most severe at the ends of the core where it is most often touched. If contamination has occurred the σ_p profile will show high levels at the ends of a core that will be discontinuous with levels in the adjacent core (as long as that core has not also been contaminated). This effect was observed in a few places in the σ_p profile. The σ_p profile is also determined by other events than volcanic eruptions or contamination, for example biogenically derived acid. Figure 2 shows two peaks: the peak at 25.4 m is probably volcanic in origin, while the peak at 25.9 m is probably due to other factors. Volcanic events are recognized by their generally short duration and their fairly symmetrical shape, this is seen in the peak at 25.4 m in Figure 2 (compare the peaks in Figure 4). The second peak in Figure 2 showing a steady rise over 20 cm and then an abrupt fall in σ_p at 25.9 m is not typical of a volcanic event, nor contamination, and temperature fluctuations are too small to cause the effect. The cause may be one of the other influences on σ_p. Other areas showing discontinuities at core ends are at 12 and 13 m depths producing an apparent double peak, where the highest levels are at the ends of the cores, and the peak at 14 m is another example. The peaks that appear to be a result of contamination or other nonvolcanic factors have not been removed from the σ_p profile shown in Figure 3 because such data manipulation is a very subjective procedure.

3. Conductivity Record

The measured high-frequency conductivity was corrected for densification effects using the Looyenga model for ice / air mixtures [Glein and Parent, 1975]:

$$\sigma_p = \frac{\sigma_x}{\rho / (0.68 + 0.32p / \rho)^2}$$

where σ_x is the measured high frequency conductivity of firm with density ρ. The σ_p response is determined by both acid and neutral salt concentrations [Moore et al., 1989]. Salt is not a significant factor in the conductivity of ice from the inland areas of Antarctica where marine ion concentrations are generally < 1 μeq l$^{-1}$ [Legrand, 1987]. However, contamination introduced during core handling can introduce levels of NaCl far higher than those

![Figure 2](image2.png)

Fig. 2. Detailed DEP conductivity profile for the G 15 core showing a probable volcanic peak at 25.4 m and a feature due to a nonvolcanic cause reaching a maximum at 25.9 m. The ends of the cores are shown by vertical lines.
cores [Legrand and Delmas, 1987]. Recently, a consensus has been reached that the upper peak is actually the 1815 eruption of Tambora, and the second is an unknown eruption that occurred around 1808. The acid flux in cores from different areas of Antarctica, produced by the 1808 eruption indicates a local eruption, [Legrand and Delmas, 1987]. This conclusion also agrees with the analysis of glass shards from the two events in a South Pole ice core [Palais et al., 1990], where the glasses from the younger peak matched glasses known to be from the Tambora eruption.

With the knowledge that peak 7 is Tambora 1815 we can use simple linear interpolation assuming a constant accumulation rate to provide dates for the top 30 m of the core. This chronology can be improved using the established record of the largest volcanic eruptions covering the probable time interval covered by the core. Results from other cores suggest that the most reliable volcanic eruption to use as reference horizon in addition to the 1815 eruption of Tambora, is the near surface eruption of Agung (1963). On the basis of the accumulation rate found from the identification of peak 7 as Tambora, peak 2 is likely to be Agung. It would also be desirable to have a reference horizon from a much earlier eruption. This would be before any historical records, and therefore should be as widely observed and as accurately dated as possible. Langway et al. [1988] identify large volcanic signals in 8 ice cores from different areas of Antarctica and Greenland which appear to be from the same eruption. The eruption has been dated by counting annual layers in the Milcent and Crete (accumulation rates 0.49 and 0.26 m yr⁻¹) Greenland cores at A.D. 1258-9. The 1259 eruption was a very large, probably tropical eruption, and Hammer et al. [1980] report that it is the third largest acidity spike in the Crete core acidity record, which is generally dominated by local Icelandic eruptions. In Antarctica, accumulation rates are generally much lower than in Greenland, and annual layers can be easily lost. Langway et al. [1988] report that the second largest signal in the last 1000 years recorded in South Pole precipitation may be the 1259 eruption. They compared their dating of the 1259 volcanic peak with dating of annual horizons at South Pole (0.08 m yr⁻¹ accumulation rate) by Mosley-Thompson and Thompson [1982] and report a loss of about 40 years precipitation over the last 700 years. This degree of loss is entirely reasonable, and so it seems likely that the 1259 eruption should be seen as a major event at G 15, if the core reached this horizon. The sharp peak at 95 m depth is close to the expected depth of the 1259 event assuming an accumulation rate based on the Tambora horizon. The peak observed here is not so large in relation to Tambora as observed at South Pole (Table 1), however, part of the peak may have been missed in the DEP analysis because almost 5 cm of the core immediately after the peak maximum was unfortunately not measured. The peak at South Pole is also a very sharp feature similar to that seen here. We therefore feel confident in assigning the 95-m peak to the 1259 eruption.

The fallout from historically known eruptions has been found to take about a year to reach the Polar regions, therefore the start of the conductivity spike assigned to the volcano was dated as the beginning of the year following the eruption. The fixed marker horizons of Agung, Tambora and the large eruption of 1259 were used to calculate an optimum dating for the core shown in Figure 3. The water equivalent accumulation rates found using the three volcanic reference horizons are 0.116 m yr⁻¹ between 1964 and 1984, 0.086 m yr⁻¹ from 1816 to 1964, and 0.092 m yr⁻¹ between 1259 and 1816. Our assumption that the spikes in Figure 3 are correctly assigned to the marker eruptions is strengthened by the similar accumulation rates deduced for periods between them. The apparent increase in accumulation rate of 25-30% between 1963 and the present is in agreement with the findings of Petit et al., [1982] that the accumulation rate at Dome C, East Antarctica was 30% higher since 1965 than it had been in the 1955-1965 period. The accumulation rates are lower than found using the densification model by around 30%. One of the reasons for this is the sensitivity of the accumulation rate to the chosen break between the first and second stages of densification. Starting the second stage at about 17 m depth decreases the deduced accumulation rate to about 0.11 m yr⁻¹.

3.2. Identification of Volcanic Signals

Peak 1 is a very sharp feature, a characteristic often observed in local nonstratospheric eruptions. The most likely candidate is Deception Island in the Antarctic Peninsula which erupted several times in 1969 and 1970. The Deception Island eruption was not observed in cores from the Antarctic Peninsula, much closer to the eruption, however, evidence of the fall-out pattern from islands around Deception Island suggests that a southwesterly wind carried the plume away from the Peninsula [Baker et al., 1975, p.58]. The plume could then have been transported in the zonal circulation to East Antarctica. Peaks 3 and 4 are probably Tarawera, (1886) and Krakatau (1883). Legrand and Delmas [1987] report these eruptions as a broad peak in the Dome C acidity profile. Here the two eruptions are clearly separated. Peak 5 is probably Cosegina (1835), but peak 6 is rather difficult to assign to a specific eruption using compilations of volcanic activity. The Dome C acidity record showed a similar feature to peaks 5 and 6 at the same separation from Tambora. Several possible eruptions are available from the compilations of Lamb [1970] or Newhall and Self [1982], particularly Armagora, South Pacific (1846), Coseguina, Nicaragua (1835) and Galunggung, Java (1822). Legrand and Delmas [1987] assigned peak 5 to Armagora and peak 6 tentatively to Coseguina. The best dating for the G 15 core gives dates of 1835 for peak 5 and 1829 for peak

<table>
<thead>
<tr>
<th>Eruption</th>
<th>G 15 DEP Acid Flux</th>
<th>South Pole Estimate</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agung 1963</td>
<td>27%</td>
<td>22%</td>
<td>Legrand and Delmas [1987]</td>
</tr>
<tr>
<td>Unknown 1808</td>
<td>18%</td>
<td>45% and 55%</td>
<td>Legrand and Delmas [1987]</td>
</tr>
<tr>
<td>Krakatau 1883</td>
<td>25%</td>
<td>20-30% and 13%</td>
<td>Legrand and Delmas [1987]</td>
</tr>
<tr>
<td>Unknown 1259</td>
<td>53%</td>
<td>200% and 110%</td>
<td>Legrand and Kirchner [1990]</td>
</tr>
</tbody>
</table>

Langway et al. [1988]
6. It is interesting to note that with our dating Armagura apparently produced no significant deposits at G 15. This contrasts with
Legrand and Delmas [1987] interpretation of the Dome C record where they assigned Armagura to one of the most prominent peaks.

As discussed in section 3.1, peaks 7 and 8 form a well-known doublet in Antarctic ice core records, the younger peak 7 being Tambora, the older probably caused by a local volcanic eruption around 1808. Palais et al. [1990] analyses of the glass shards in the older horizon shows a distinct alkaline affinity (high Na₂O +
species. The constant, C, is made up of a pure ice component, possible contributions from physical properties such as grain size, and contributions from chemical species not accounted for in the salt or acid terms. For pure single crystals of ice at -22°C, C is 4.5 μs m⁻¹ [Glen and Paren, 1975], this is the value we have taken for C in producing Figure 4. The acid in the Dolleman core does not come from volcanic sources but from biogenic activity. The principal acid in the Dolleman core is H₂SO₄ which makes up about 60% of the total, but there are important (about 25% on average, [Moore et al., 1989]) quantities of HCl, probably produced from the reaction between H₂SO₄ and NaCl. The remainder of the acid is HNO₃. The acid deposition from volcanic events is mainly H₂SO₄, while in some eruptions HCl and HF are also produced. Because the acid in the G 15 core may not follow exactly the same calibration equation established for the Dolleman Island core, we present the acid fluxes for several eruptions expressed as a fraction of the Tambora eruption. This will be a valid approach if the eruptions have the same balance of acids in their fallout. A further complication is the level and variability of neutral salts in the ice. Kamyama et al. [1989] report measurements of marine ions in surface snow from an area 500 km west of G 15 at similar altitudes. Total marine ions are about 6 μeq l⁻¹, much greater than values typical of inland areas of Antarctica [Legrand, 1987]. Equation (4) predicts that this level of neutral salt would contribute about 3 μs m⁻¹ to σe. The variability of salt concentrations between the volcanic eruptions is not known, but seasonal variations are probably much larger than annual variability. The large eruptions considered in this section are thought to have produced significant deposits for at least 1 year, therefore errors in relative flux caused by salt variations are likely to be small.

The detailed σe profiles for the Agung (1963), Tarawera and Krakatao doublet (1886,1883), Tambora and unknown (1808) pair, Huaynaputina (1600), and unknown (1259) eruptions, are shown in Figure 4. The deposition fluxes were calculated for the peaks after subtracting the background levels of σe. Table 1 shows the fluxes as a percentage of the Tambora flux. Table 1 also shows flux estimates from South Pole acidity data based on liquid conductivity and ion chromatography measurements [Langway et al., 1988, Legrand and Delmas, 1987, Legrand and Kirchner, 1990]. Percentages of the Tambora flux are shown in Table 1 because there are large differences in absolute acid fluxes given by different authors. For example, for the Tambora 1815 eruption at South Pole, Langway et al., [1988] give a value of 83 kg/km² for the H₂SO₄ deposition, while Legrand and Delmas [1987] give 42 kg/km² for the event. In addition, any doubt about the application of (4) would make absolute values of flux calculated dubious. Nevertheless, for the sake of completeness, the Tambora deposition flux for the G 15 core using (4), assuming all the acid is H₂SO₄ and integrating over the area shown in Figure 4 is 95 kg/km². South Pole has a similar accumulation rate to G 15 (about 0.08 m yr⁻¹ water equivalent), and would be expected to have similar acid fluxes. The relative fluxes of Agung, Krakatoa, and Tambora agree well those of Legrand and Delmas [1987] and support their estimate of sulphate aerosol ratios between the eruptions as 1:1:5, respectively. The estimate for Krakatoa of Langway et al. [1988] is rather lower than our estimate. The flux estimate for the unknown 1808 eruption given here is lower than observed at South Pole, supporting the suggestion that the eruption was from the Antarctic area. The estimate for the 1259 eruption based on Legrand and Kirchner [1990] and Langway et al. [1988] non-sea-salt sulphate measurements disagrees with our estimate. As discussed in section 3.1, this may be due to the incomplete analysis of the peak, a loss of precipitation at G 15, or
Fig. 4. Detailed DEP conductivity profiles (upper curves) for seven eruptions well known in Polar ice cores. The conductivity can be converted to a strong acid concentration (lower curves) using equation (4). The relative acid flux for each eruption as a percentage of that of Tambora is shown, assuming the balance of acids in each eruption is similar to the Tambora eruption. The deposition fluxes in Table 1 were found by integrating between the curve and the estimated background shown by the straight lines.
a differing balance of acids and/or salts. Alternatively, the σ_z spike may not be correctly identified as the 1259, though it is a large peak and misidentification seems unlikely. There is evidence of local changes in the deposition of artificial tritium (a stratospherically derived impurity) at South Pole, with differences in concentration for the 1966 horizon of 1.5:1 in two pits a few hundred meters apart [Jouzel et al., 1979]. There appears to be a large discrepancy (a factor of 2) in the 1259 flux between the two South Pole cores, so the difference between them and the G 15 core may be due to small-scale changes in deposition.

5. CONCLUSIONS

The accumulation rate based on eruptions over the last 800 years is about 0.09 m yr$^{-1}$ water equivalent, and the averages over several hundred years are quite constant for the period from 1250 to the 1960s. There seems to have been a 25% increase in accumulation rate from about 1964 to the present in agreement with observations from Dome C, East Antarctica [Petit et al., 1982]. There seems to be little net loss of accumulation through wind scouring as the pattern of eruptions spanning the last 200 years seems well preserved. The 700-m core from Mizuho Station (Figure 1) shows many events of accumulation loss which makes accurate dating difficult. The area around G 15 appears not to suffer in this way.

We have used the density profile of the G 15 core to obtain a basic chronology of the core. The chronology has been refined using the DEP σ_z profile which displays the well-dated eruptions of Agung (1963), Tambora (1815), and the unknown (1259) event. While the final dating of the core cannot be checked without further analysis, the dating of the probable signal from the Huaynaputina (1600) eruption was correct to within 2 years. The dates of some large spikes in the σ_z record that have been observed in other ice cores have been estimated. The DEP method has been used to estimate the acid flux from volcanic eruptions. These data seem generally consistent with earlier estimates based on direct measurement of acidity in ice cores. Hence DEP offers a very rapid way of semiquantitatively measuring strong acid in ice cores. We recommend a similar study on a better dated ice core.

Acknowledgments. J.C. Moore wishes to thank the Japan Society for the Promotion of Science for providing the JSPS Fellowship, which enabled him to stay and carry out the present work at the Institute of Low Temperature Science, Hokkaido University, in 1989. We are grateful to D. A. Peel and H. Weyer for useful suggestions during the writing of the manuscript.

REFERENCES

Thompson, L. G., E. Morley-Thompson, W. Dansgaard, and P. M. Groves, The Little Ice Age as recorded in the stratigraphy of the tropical Quelccaya ice cap, Science, 234, 361-364, 1986.

N. Maeno and H. Narita, Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan.

J. C. Moore, British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK.

(Received December 10, 1991; revised May 6, 1991; accepted May 7, 1991.)