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• PM2.5 responses to idealized scenarios
reflectingmanufacturing shifts were simu-
lated.

• Significant changes in PM2.5-related mor-
tality and economic cost occurred over
Asia.

• Third countries without GDP rise could
see mortality rise and may demand com-
pensation.
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The diversification or decoupling of production chains from China to alternative Asian countries such as India or
Indonesia would impact the spatial distribution of anthropogenic emissions, with corresponding economic impacts
due to mortality associated with particulate matter exposure. We evaluated these changes using the Community
Earth System Model, the Integrated Exposure-Response (IER) model and Willingness To Pay (WTP) method. Signifi-
cant effects on PM2.5 related mortality and economic cost for these deaths were seen in many East, Southeast and
South Asian countries, particularly those immediately downwind of these three countries. Transferring all of export-
related manufacturing to Indonesia resulted in significant mortality decreases in China and South Korea by 78k
(5 per 100k) and 1k (2 per 100k) respectively, while Indonesia's mortality significantly increased (73.7k; 29 per
100k), as well as India, Pakistan and Nepal. When production was transferred to India, mortality rates in East Asia
show similar changes to the Indonesian scenario, while mortalities in India increased dramatically (87.9k; 6 per
100k), and mortalities in many neighbors of India were also severely increased. Nevertheless, the economic costs
for PM2.5 related mortality were much smaller than national GDP changes in China (0.9 % of GDP vs. 18.3 % of
GDP), India (2.7 % of GDP vs. 84.3 % of GDP) or Indonesia (9.4 % of GDP vs. 337 % of GDP) due to shifting all of
export-related production lines from China to India or Indonesia. Morally, part of the benefits of economic activity
should be used to compensate the neighboring communities where mortality increases occur.
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1. Introduction

The ongoing coronavirus COVID-19 has disrupted global supply, demand
and logistics infrastructure (Guan et al., 2020; Ivanov, 2020; Nicola et al.,
2020); countries with greater dependency on foreign supply chains have
been more negatively affected (Fernandes, 2020). 94 % of the Fortune 1000
companies have suffered from interrupted supply chains caused by COVID-
19 outbreaks (Sherman, 2020). The resulting material shortages and delivery
delays have reduced production, and many multinational businesses have
reconsidered their manufacturing deployments (Hayakawa and Mukunoki,
2021; Liu et al., 2020; Free and Hecimovic, 2021). During recent decades,
many international companies have become greatly dependent on Chinese
production and supplies, which has increased instability and uncertainties
in global trade and supply chains during the COVID-19 pandemic. On July
17, 2020, the Japanese Ministry of Economy, Trade and Industry announced
that a first batch of 87 Japanese companies had transferred portions of their
supply chain in China to Southeast Asia or back to Japan to reduce the depen-
dence on China. Southeast Asian countries with relatively low labor costs,
such as Vietnam, Indonesia and India, are probably the most likely to benefit
from a shift of global manufacturing (Lin and Lanng, 2020). In fact, the
reshaping of global manufacturing is not only related to epidemic outbreaks,
but also the rising risk of trade wars, upward trends in nationalism and pro-
tectionism, considerations about sustainability and tackling climate change
(Hedwall, 2020; Free and Hecimovic, 2021).

Many studies have shown thatmillions of peopleworldwidedie every year
fromdiseases attributed to long-term exposures tofine particulatematter, par-
ticularly PM2.5 (Brauer et al., 2016; Burnett et al., 2014; Apte et al., 2015;
Wang et al., 2018). International trade activities are associatedwith emissions
of air pollutants. Lin et al. (2014, 2016) calculated emissions embodied in ex-
port (EEE) of different regionsworldwide and analyzed their impacts on atmo-
spheric environment and human health. Zhang et al. (2017) used global
emissions, chemistry, trade and exposure models to estimate premature mor-
tality related to PM2.5 pollution from the production and consumption process
to show that the health impacts of PM2.5 attributable to international trade are
significant.

As aerosolswill be emitted during the productionprocess, the redistribution
of production lines is expected to affect the distribution of aerosol emissions.
Abrupt reductions in the emission of aerosols and aerosol precursors due to a
socio-economic crisis results in immediate and significant global and regional
climate responses, while the effects of CO2 emission reductions are much
smaller in the short term (Ran et al., 2021). Other studies have also found
that atmospheric CO2 concentration and its impact on climate due to carbon
transfer are very small and lie within observed interannual variability (Wei
et al., 2016; Lin et al., 2016). Hence in our simulations, we only change aerosol
and aerosol-precursor emissions. The scenarios used simulate moving half, or
all, export-related manufacturing from China to either Indonesia or India.

We explore the potential risks and benefits to human health and social
economy of reshaping global manufacturing, via a series of sensitivity experi-
ments using an earth system model (ESM). We redistributed anthropogenic
emissions of aerosols and their precursors from the industry, energy and trans-
portation sectors to represent manufacturing shift from China to Indonesia or
India and use these emissions within the ESM to determine changes in surface
PM2.5. India and Indonesia are chosen as the destinations for manufacturing
shift due to their relatively large population and territorial area among
South and Southeast Asian countries. Indonesia has a maritime setting along
the equator, while India is much more continental, which greatly affects the
redistribution of aerosols. We then consider PM2.5 related mortality from
fivemajor diseases, and a widely usedmetric tomonetize attributable mortal-
ity and assess economic aspects of transferring manufacturing.

2. Methods

2.1. Model

A baseline and four sensitivity simulations were done with the Commu-
nity Earth System Model version 1.2.2 (Hurrell et al., 2013). The baseline
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experiment was the B_2000_CAM5_CN component set, including the Com-
munity Atmosphere Model 5 (CAM5) (Neale et al., 2012), Parallel Ocean
Program version 2 (POP2), Community Land Surface Model (CLM) version
4.0, the Los Alamos sea ice model (CICE) version 4, all coupled together
using the CESM coupler CPL7. The horizontal resolution of CAM5 and
CLM was 0.9° × 1.25° latitude-longitude (f09 grid), while that of POP2
and CICE was about 1° (g1v6 grid). The vertical coordinate of CAM5 was
a hybrid sigma-pressure system consisting of 30 vertical levels, with
model top at about 3.6 hPa. CLM had 15 soil layers to 35 m depth, POP2
had 60 height layers, and CICE had five thickness categories.

The simulations were run with the Modal Aerosol Module with three
modes (MAM3). An alternative andmore sophisticated sevenmode version
(MAM7) has been shown to be generally well reproduced by MAM3 (Liu
et al., 2012), and so we use the default MAM3 option in
B_2000_CAM5_CN. Emissions were based on AeroCom (Aerosol Compari-
sons between Observations and Models; Textor et al., 2005), although am-
monia was prescribed by sulfate in the simplified chemistry of MAM3.
Anthropogenic primary black carbon (BC), primary organic matter
(POM), sulfur dioxide (SO2), primary sulfate aerosol and semi-volatile
organic gas species (SOAG) were emitted in seven sectors – agriculture,
waste, domestic, energy, industry, transportation, shipping.
2.2. Experiment design

The default CESMexperiment “B_2000_CAM5_CN”with greenhouse gas
(GHG) levels and aerosol emissions of the year 2000 was adjusted to create
our “B_2020_CAM5_CN” baseline experiment. The atmospheric GHGs con-
centrations were updated to that of year 2020 based on NOAA (available at
https://gml.noaa.gov/ccgg/trends/). The aerosol emissions were replaced
with year 2020 values from the Representative Concentration Pathway
6.0 (RCP6.0) scenario experiment in CESM. The RCP6.0 was created for
the 5th Climate Model Intercomparison Project (CMIP5) (Taylor et al.,
2012), as an intermediate stabilization emission scenario leading to
6.0 Wm−2 increase in radiative forcing by the end of the century
(Moss et al., 2010). Since there is no significant difference in emissions
and temperatures under any scenario around 2020 (Ran et al., 2021;
IPCC, 2014), the choice of RCP scenario is not important in our simula-
tions. The “B_2020_CAM5_CN” was run for 200 years to reach the cli-
mate equilibrium state of 2020 (Fig. S1.1), and the following analysis
for simulation results was based on the median climate state for the
third 100 years.

We redistributed anthropogenic BC, POM, SO2, primary sulfate aerosol
and SOAG emissions in the industry, energy, and transportation sectors to
represent manufacturing shifts from China to Indonesia or India. Emissions
Embodied in Exports (EEE) was calculated using an Input-output Model
(Lin et al., 2016) to determine the proportion of emission transfer in the in-
dustry, energy and transportation sectors of China. We integrated the emis-
sion sectors described by National Bureau of Statistics of China (NBSC) to
meet the classification of emission sectors in CESM (see Table S1). The
input-output table for 2017 was used because it is the latest available
(NBSC, 2017). The totalmerchandise exports and imports in China changed
little between 2017 and 2020 (Fig. S1.2). Other economic data needed for
the calculationwas also derived fromNBSC. Results show that EEE of China
in industry, energy, and transport sector accounts for about 22.4 %, 17.9 %
and 23.8 % of total emissions, respectively.

We created four sensitivity simulations for detecting a response of the
climate system tomanufacturing redistributions based on the climatic equi-
librium state of the baseline experiment (Table 1). These are, i) All_toID: all
of China EEE transferred to Indonesia; ii) Half_toID: half of China EEE trans-
ferred to Indonesia; iii) All_toIN: all of China EEE transferred to India; iv)
Half_toIN: half of China EEE of transferred to India. Available labor is gen-
erally proportional to population density, so we distributed the EEE of
China around Indonesia or India based on the geographic population distri-
bution in 2020 (Fig. S1.3) rather than evenly increasing emissions across
Indonesia or India (Fig. 1).

https://gml.noaa.gov/ccgg/trends/


Table 1
Emission scenarios of the baseline experiment and the four sensitivity simulations.

Experiment Simulated time Aerosol emissions GHGs concentration

Baseline experiment 300 years Same as the emission level of 2020 in RCP6.0 From NOAA ESRL data in 2019
Transferred to Indonesia by 50 %
(Half_toID)

100 years (restarted from the 200th year of
the baseline)

Same as the emission level of the baseline but 50 % of EEE of China
transferred to Indonesia

Same as the baseline

Transferred to Indonesia by 100
% (All_toID)

100 years (restarted from the 200th year of
the baseline)

Same as the emission level of the baseline but 100 % EEE of China
transferred to Indonesia

Same as the baseline

Transferred to India by 50 %
(Half_toIN)

100 years (restarted from the 200th year of
the baseline)

Same as the emission level of the baseline but 50 % of EEE of China
transferred to Indonesia

Same as the baseline

Transferred to India by 100 %
(All_toIN)

100 years (restarted from the 200th year of
the baseline)

Same as the emission level of the baseline but 100 % EEE of China
transferred to Indonesia

Same as the baseline
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2.3. Correction for modeled PM2.5

We compared the simulated 100-year mean PM2.5 concentrations in our
baseline run with PM2.5 concentrations for 2010–2020 at 0.1° × 0.1° hori-
zontal resolution given by van Donkelaar et al. (2021) of combined satellite
observations, chemical transport modeling and ground-based monitoring.
The distribution of PM2.5 concentrations in the baseline was similar to
that of the satellite-derived PM2.5 (van Donkelaar et al., 2021), but with sig-
nificant differences in some areas of interest in this study (China, India and
Indonesia), and further afield over West Asia and North Africa (Fig. S2.1).
Fig. 1. Annual mean total anthropogenic aerosol and aerosol precursor emissions (10−

between the four sensitivity simulations and the baseline. Here is the hypothetical a
sulfate and SOA emission. Sulfate and SOA here refer to the part of SO2 and SOAG th
median value of the 100-year annual mean surface (the lowest level of the model) wi
mean surface wind in the sensitivity simulations are shown in the four panels for emiss
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Since ammonia is not directly simulated in the MAM3 aerosol module, am-
monium sulfate is effectively prescribed. We performed the baseline exper-
iment with the computationally more expensive MAM7 module for year
2000, which explicitly simulated ammonia, and improved PM2.5 concentra-
tions over the Indian subcontinent and North China, but not over Indonesia
and Southeast Asia (Fig. S2.2). Therefore, we do not consider the use of
MAM3 rather than MAM7 as the main reason for the PM2.5 deficiencies.

The multi-year average surface concentrations of each simulated aero-
sol (with diameters <2.5 μm) in the baseline have similar spatial distribu-
tion as the 2010–2020 average from Modern-Era Retrospective analysis
12 kg m−2 s−1) for the baseline for the year 2020, and the differences in emissions
erosol mass emission, described as the sum of BC, POM, primary sulfate aerosol,
at has been converted to sulfate or SOA. The arrows in the baseline panel are the
nd (0.9° × 1.25°) in the baseline, and the standard deviation of 100-year annual
ion differences.
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for Research and Applications version 2 (MERRA-2; GMAO, 2015;
Fig. S2.3). However, sulfate and POM in the baseline were significantly
underestimated across much of Asia, particularly North India, East China
and the island of Java. Themost plausible reason is that the emission inven-
tory used by MAM3 did not capture the high emissions of anthropogenic
sulfur dioxide and organic carbon emissions in regions where sulfate and
POM were severely underestimated. Sea salt and dust showed some differ-
ences, but are not affected by transfer of manufacturing (Figs. S2.4 and
S2.5). In fact, the PM2.5 bias outside East Asia, South Asia and Southeast
Asia, had little effect on our results, as PM2.5 concentrations and PM2.5 re-
lated mortality outside Asia did not change significantly in our simulations
(Figs. S3.1 and S3.2).

Because of the health impacts of PM2.5 scale non-linearly with concen-
tration – that is the same increase in concentration has larger impacts
when added to a low concentration background than it does on a high con-
centration one, we need to correct simulated PM2.5 in Asia with reanalysis
data and observed data. Firstly, we corrected modeled sulfate, BC, POM,
dust and sea salt aerosol concentrations (only considering aerosols
<2.5 μm in diameter) in Asia, bymultiplying themby the ratio of each aero-
sol concentration in MERRA-2 to that in the baseline (0.9° × 1.25°;
Fig. S2.3). The weighted sum of the five aerosols and secondary organic
aerosol (SOA) represents the simulated PM2.5 concentration (Eq. (1)). The
weight for each aerosol was found by multiple linear regression (MLR) be-
tween aerosols and the satellite-derived PM2.5 from van Donkelaar et al.
(2021). Particular aerosols in various countries are highly correlated (we
took R > 0.85 here; Sheet 1 in Supplementary tables 1), so, for that country
we combined the highly correlated aerosols into a single variable (High-
lights in Supplementary tables 1) for the MLR to avoid issues with over-
fitting. The same procedure was applied for PM2.5 in all experiments, and
the subsequent calculations and analysis are based on the corrected PM2.5

concentrations.

PM2:5,i rð Þ ¼ ∑6
g¼1Aerosolg,i rð Þ �Wg,r (1)

Here, PM2.5, i(r) is the corrected PM2.5 concentration of grid cell i located
in Asian country r. Aerosolg,i(r) represents the concentration of Aerosol g
corrected by MERRA-2 data. Wg,r is the regression coefficient for aerosol g
in country r.

The corrected spatial distribution of 100-year mean surface PM2.5 con-
centrations in the baseline simulation is compared with 2010–2020 mean
satellite-derived PM2.5 (van Donkelaar et al., 2021) in Fig. 2. The high emis-
sions in the North China and the Indo-Gangetic plains were well
reproduced. Corrected regional mean PM2.5 concentrations of most Asian
countries were within 20 % of observations (van Donkelaar et al., 2021),
and within the 95 % confidence intervals of the medians (Supplementary
tables 2). Despite clear differences in some places we consider that baseline
simulation satisfactorily reproduced the mean present surface PM2.5 con-
centrations and can be used to estimate related mortality and economic
costs in our hypothetical cases.

2.4. Calculation of PM2.5 related mortality

We considered the fivemajor disease endpoints of PM2.5 relatedmortal-
ity where surface PM2.5 concentrations are considered a risk factor in the
Global Burden of Disease (GBD) 2010 (Global Burden of Disease
Collaborative Network, 2013). For adults (age ≥ 25), these endpoints are
ischemic heart disease, cerebrovascular disease (stroke), chronic obstruc-
tive pulmonary disease, and lung cancer, and for children under 5, acute re-
spiratory lung infection.

2.4.1. Input data

2.4.1.1. Global PM2.5 and population surfaces. We simulated global annual-
average ambient PM2.5 concentrations at 1° grid resolution using CESM
1.2.2. We used the global 30 km gridded population data set (Center for
International Earth Science Information Network - CIESIN - Columbia
4

University, 2018) of 2020 population in our mortality model, with the
PM2.5 concentrations interpolated to the same grid using areal conservative
remapping.

2.4.1.2. Mortality data. We obtained the cause-specific mortalities for the
five endpoints in 2019 from the GBD (2019) - the most recent publicly
available data set at the Institute for Health Metrics and Evaluation
(IHME). Deaths per 100,000 population in 2019 for the five endpoints in
54 countries and three regions are provided in the Supplementary tables 3.

2.4.2. The Concentration-Response function
The Concentration-Response (C-R) function is a mathematical equation

that describes the relationship between exposures to PM2.5 and the relative
risk of mortality for each endpoint. Here, we employed the integrated
exposure-response functions (IERs) (Burnett et al., 2014) to constrain the
shape of the C-R relationship and estimate relative risks attributed to
PM2.5 exposure for the five endpoints. The IER framework parametrizes
the dependence of relative risk, RR, on concentration, C (Burnett et al.,
2014):

RR Cð Þ ¼ 1þ α 1− exp −γ C−C0ð Þδ
� �h i

for C > C0

RR ¼ 1 for C≤C0

ð2:1Þ

For each endpoint, C0 represents a theoretical minimum-risk concentra-
tion abovewhich there is evidence indicating health benefits of PM2.5 expo-
sure reductions, and parameters α, γ, and δ determine the overall shape of
the concentration-response relationship. A distribution of 1000 estimates of
these parameters for each endpoint for all ages was provided in GBD 2010
(Global Burden of Disease Collaborative Network, 2013). Here we use the
median value of the RR from the 1000-member parameter set found over
PM2.5 concentrations from 0 to 200 μg/m3 at 0.1 μg/m3 steps (see Supple-
mentary tables 4).

2.4.3. Modeling of PM2.5 related mortality
We estimated the premature mortalityMi(r),k of all ages for disease end-

point k attributable to ambient PM2.5 for grid cell i located in region r (see

Eq. (2.2)). bIr,k represents the hypothetical “underlying incidence”
(i.e., cause-specific mortality rate) for endpoint k that would remain for re-
gion r if PM2.5 concentrationswere reduced to the theoreticalminimum risk
concentration throughout that region.

Mi rð Þ,k ¼ Pi rð Þ �bIr,k � RRk Ci rð Þ
� � � 1

� �
=100000 wherebIr,k ¼ Ir,k=RRr,k (2.2)

Here, Pi(r) is the population of grid cell i located in region r, Ir, k is the re-
ported regional average annual deaths (per 100,000) for endpoint k in re-
gion r, Ci(r) represents the annual-average PM2.5 concentration in cell i,
RRk(Ci(r)) is the relative risk for end point k at concentration Ci(r), and
RRr,k, as defined below (Eq. (2.3)), represents the average population-
weighted relative risk for end point k within region r:

RRr,k ¼
∑N
i¼1Pi rð Þ � RRk Ci rð Þ

� �
∑N
i¼1Pi rð Þ

(2.3)

In addition to the absolute number of premature deaths related to
PM2.5, we also calculated the per-capita mortality (Eq. (2.4)) to eliminate
the influence of population density.

Mi rð Þ,k ¼
Mi rð Þ,k � 100000

Pi rð Þ
(2.4)

Mi rð Þ,k is the per-capita attributablemortality for grid cell i located in region r.



Fig. 2.Multi-year mean surface PM2.5 concentrations for (a) the baseline simulation with horizontal resolution 0.9° × 1.25° over the third 100 years (after bias correction), and
(b) van Donkelaar et al. (2021) with horizontal resolution 0.1° × 0.1° over 2010–2020. The differences (model- van Donkelaar et al., 2021) between them are shown in (c).
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2.5. Economic assessment

2.5.1. Economic cost for mortality
We used the Value of Statistical Life (VSL), the most generally used

metric to monetize attributable mortality for PM2.5 (OECD, 2012,
2014, 2017; Lu et al., 2017; Giannadaki et al., 2018), to evaluate the
economic cost attributed to PM2.5 related mortality due to
5

manufacturing transfer. The VSL is the marginal value of a reduction
in the risk of dying, and is therefore defined as the rate at which the
people are prepared to trade off income for risk reduction (Braathen
et al., 2009):

VSL ¼ ∂WTP
ΔR

(3.1)
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where R is the risk of dying and ∂WTP is an individual's “Willingness
To Pay” to reduce mortality risk by ΔR. VSL is an integration of indi-
vidual values for small changes in mortality risk, rather that the
value of a certain person's life (OECD, 2012).

We derived the VSL value in constant 2015 USD of PPP (purchasing
power parity) terms for the individual countries or regions (OECD
Statistics, 2020; see Table S2) for the year 2019 (the latest data available).
The estimation of VSL here accounts for differences in income levels and in-
come elasticities across countries. The income elasticity is 0.8, 0.9 and 1 for
high-, middle- and low-income countries respectively, indicating that as in-
comes rise, the WTP for a marginal reduction in the risk of attributable
death for PM2.5 also rises, but not quite in proportion to the rise in incomes
(OECD, 2017). The total economic cost in country/region r for the year Y
can be assessed by multiplying the total number of PM2.5 related deaths
in country/region r ∑i=1

N Mi(r) with the corresponding VSLr, Y,

Economic Cost ¼ ∑N
i¼1Mi rð Þ � VSLr,Y (3.2)

2.5.2. Economic benefits from additional production
Simple estimation for potential economic changes to Gross Domestic

Product (GDP) due to the shift of production lines comes from CO2 per
GDP in China, Indonesia and India (Andrew, 2020; BP, 2020), was found
using Eq. (4).

Economic benefits ¼ ΔEr=Fr (4)

where ΔEr is the emission change in country r, and Fr refers to CO2 emis-
sions per GDP in country r.

2.6. Uncertainty and significance test

For each experiment, we calculate yearly mortality rate per 30×30 km
grid cell based on annual mean PM2.5 for 100 years (in the climate equilib-
rium state), then the 100 estimates for mortality differences between the
baseline and sensitivity simulations are calculated for each grid cell and
their median values are shown in Fig. 4. For an individual country, we con-
sider the sum of mortality rate in each grid cell as national total mortality
rate, then deaths per 100k are calculated as the per-capita mortality of
this country. One hundred estimates of national per-capita and total mortal-
ity and their changes due to manufacturing shift are calculated for each
Asian country, and we use the 2.5 and 97.5 percentiles of the 100 estimates
as the ranges of mortality rates and their changes (Supplementary tables 5
and 6). In addition, statements about whether changes in nationalmortality
are significant were evaluated with the non-parametric Wilcoxon signed-
rank test for each Asian country (Supplementary tables 5 and 6). The two-
tailed test was carried out at the 0.05 significance level.

For 100-year estimates of national total mortality rates, we calculate
corresponding attributable economic cost for mortality using Eq. (3.2).
Then we use the same method as for mortality to obtain the uncertainty
and perform the significance test for economic costs of each Asian country
(Supplementary tables 7).

3. Results

3.1. Changes in PM2.5 concentrations

As expected, the shift of manufacturing from China to India/Indonesia
would result in significant changes in surface PM2.5 concentrations in
China, India and Indonesia (Fig. 3). When half or all of export-related pro-
duction lines were transferred to Indonesia, northern China's PM2.5 concen-
trations declined by over 4 μgm−3, with local differencesmuch higher than
country means (Table 2). PM2.5 declines can be also seen in other East and
Southeast Asian countries, such as the Korean Peninsula (All_toID),
Thailand, Laos, Cambodia, and Vietnam (Half_toID). Transferring industry
to Indonesia raised local PM2.5, especially in Java Island with rises over
6

10 μg m−3, while the country mean increased by about 6.1 or 2.6 μg m−3

in scenarios All_toID and Half_toID. PM2.5 increases also occurred in
Pakistan, North India, Nepal, driven by the consistent changes in annual
mean surface winds blowing from Java Island across the equator towards
Northern India (Fig. 1). In the rest of the world, PM2.5 concentrations
were almost constant after the shift of manufacturing, although there
were small but consistent changes in PM2.5 seen in Africa and Central
Australia that hint at possible teleconnections to the deserts there
(Fig. S3.1a, b).

Transferring production lines to India had similar impacts on China
PM2.5 concentrations as with manufacturing shifts to Indonesia (Fig. 3).
PM2.5 in North Korea and South Korea decreased by around 1 μg m−3 in
scenario All_toIN. Except for slight PM2.5 increases in Myanmar, PM2.5

changes were not obvious in most southeast Asian countries. As expected,
the most significant increases occurred in the Indo-Gangetic Plain, rising
by over 10 μg m−3. PM2.5 in countries close to India, such as Pakistan,
Nepal, Bhutan and Bangladesh were also affected by the manufacturing
shift to India. PM2.5 concentrations in other parts of the world were barely
affected (Fig. S3.1c, d). The impacts ofmanufacturing shift on surface PM2.5

concentrations were localized to East, South and Southeast Asia because
aerosol and aerosol precursor emissions were from the surface and not
well-mixed in the whole atmosphere, or even the troposphere. So, shifting
manufacturing would affect PM2.5 concentrations in countries whose emis-
sions had changed and in their downwind countries.

3.2. Attributable mortality for PM2.5

We use the abbreviations m for millions and k for thousands of deaths
per year. Attributable mortality for PM2.5 in the baseline and the four sen-
sitivity experiments was estimated based on IERs (Burnett et al., 2014),
(Eq. (2)). Giannadaki et al. (2016) applied IERs to evaluate attributable pre-
mature mortality for annual mean PM2.5 in 2010. They attributed 3.15 m
deaths globally in 2010, with China accounting for 1.33 m, followed by
India with 575k. China's attributable mortality for PM2.5 in 2016 estimated
byMaji et al. (2018)was 0.96m (with a 95% confidence interval of 0.45 to
1.36 m; we use 2.5 %–97.5 % percentiles as the ranges), accounting for
10.0% of total reported deaths in China. We estimate PM2.5 related mor-
tality in China, India and Indonesia in the baseline at 1.66 m (1.60–1.73
m), 0.99 m (0.92–1.07 m) and 78k (49–163k; Supplementary tables
5) respectively. In most of the regions where PM2.5 simulation bias is
corrected, our estimates are comparable to other estimations (OECD
Statistics, 2020). China's mortality rate is overestimated by 16 %,
India's by 1 %, and Indonesia's underestimated by 27 % (OECD
Statistics, 2020; Supplementary tables 5).

Since attributable mortality for PM2.5 depends on the population den-
sity (which is unchanged by design in these sensitivity experiments), and
PM2.5 concentrations (Eq. (2.2)), its spatial change is similar to changes in
surface PM2.5 concentrations (Fig. S3.1 vs. Fig. S3.2; Fig. 3 vs. Fig. 4). Out-
side East, Southeast and South Asia there are only insignificant changes in
attributable mortality due to the manufacturing shifts (Figs. 4, S3.2).

Transferring all of export-related production lines into Indonesia (sce-
nario All_toID) resulted in more significant mortality changes over Asia,
compared with scenario Half_toID (Fig. 4a vs. b). China's per-capita mortal-
ity attributed to PM2.5 decreased dramatically by around 5 deaths per 100k
and total mortality by 78k, with the largest decline in North China, while
they dropped by 3 per 100k and 46.9k in total under the Half_toID simula-
tion. Significant declines in per-capita and total mortality can also be seen
in South Korea, by 2 per 100k and 1k in total in the All_toID simulation,
and by 1 per 100k and 0.4k in the Half_toID simulation. In the All_toID,
mortality reductions can be seen in North Korea and Southern Japan
(Fig. 4a), while national total deaths of the two countries changed insignif-
icantly at 0.05 significance level. More modest and less significant declines
are simulated in East Asian counties in the Half_toID simulation (see Sup-
plementary tables 5). In both Half_toID and All_toID scenarios, mortality in-
creased most in Indonesia and with similar patterns, with per-capita and
total mortality rising by 29 per 100k and 73.7k, and by 17 per 100k and



Fig. 3. The median value of the 100-year changes in annual mean surface PM2.5 concentrations (0.9° × 1.25°, color bar) and that in annual mean surface (the lowest level of
the model) wind (0.9° × 1.25°, arrows) in the (a) Half_toID, (b) All_toID, (c) Half_toIN, and (d) All_toIN simulations compared with the baseline experiment.
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43.6k respectively. In the wider Southeast Asia region, there were less obvi-
ous changes inmortality.Mortality rates in the Indo-Gangetic Plain rose sig-
nificantly in India (by 1 per 100k or 13.6k), Pakistan (by 3 per 100k or
7.3k) and Nepal (by 2 per 100k or 0.9k) in the All_toID simulation.
Table 2
Themedian value of 100-year regional mean PM2.5 concentrations in the baseline at (0.9
China, India and Indonesia. The numbers in parentheses show the 2.5 % and 97.5 % per
m−3.

RCP6.0 Half_toID

China 29.9 (27.6–32.8) 29.1 (26.3–31.8)
India 46.3 (41.1–55.3) 47.1 (40.9–55.3)
Indonesia 13.3 (9.9–30.9) 15.9 (12.6–41.7)

7

However, mortality rates in South Asia showed insignificant changes in
the Half_toID simulation.

When all or half of the production lines were transferred to India
(All_toIN and Half_toIN scenario), changes in attributable mortality for
° × 1.25°) resolution, and the four sensitivity experiments (after bias correction) for
centiles of the distribution of 100-year regional mean PM2.5 concentrations. Unit: μg

All_toID Half_toIN All_toIN

28.5 (25.6–31.0) 29.4 (26.8–31.5) 28.5 (26.2–31.1)
47.5 (41.5–63.4) 53.4 (46.7–69.8) 56.8 (50.3–68.1)
19.4 (14.2–47.1) 14.2 (10.3–35.2) 13.7 (10.4–37.5)



Fig. 4. The median of 100-year estimates of differences of attributable mortality rate per 30 × 30 km grid cell for annual mean surface PM2.5 between the four sensitivity
simulations and the baseline.

Q. Ran et al. Science of the Total Environment 855 (2023) 158634
PM2.5 in East Asiawere quite similar to the Indonesian scenario (Fig. 4). Sig-
nificant decreases in mortality rate were simulated for China and South
Korea (Fig. 5c and d). However, in the Half_toID simulation, the declines
in China's mortality rates were smaller than that in Half_toIN, and slight in-
creases can be seen in Yunnan Provence, China. In Southeast Asia, increases
in mortality rates can be seen in Indonesia, especially in Java, but national
per-capita and total mortality were unchanged at the 0.05 significance
level, except for mortality rate of Myanmar which showed significant in-
crease in the Half_toIN scenario. For India, especially over the Gangetic
Plain and the southern tip of the India Peninsula, there would be significant
increases, with per-capita and total mortality rates increasing by 6 per 100k
8

and 87.9k under the All_toIN scenario, and by 4 per 100k and 57.8k under
Half_toIN. National per-capita and total mortality rates of other South Asian
countries were also severely affected in the simulations, with rises under
All_toIN for Bangladesh by 2 per 100k and 3.9k, Bhutan by 3 per 100k and
0.04k, Nepal by 5 per 100k and 1.9k, and Sri Lanka by 1 per 100k
and 0.2k. Pakistan's mortality rate rose under Half_toIN (3 per 100k; 6.4k),
while changes were not significant under the All_toIN scenario.

In conclusion, significant changes in attributable mortality for PM2.5 oc-
curred in the three countries whose industries were changed in the simula-
tions. Moreover, many countries downwind also experience significant
changes in mortality rates. The differences in significance between All



Fig. 5. The median value of 100 estimates of changes in yearly PM2.5 related deaths per 100,000 people (see Method 2.6) due to (a) half of China's Emissions Embodied in
Exports (EEE) transferred to Indonesia, (b) all of China's EEE transferred to Indonesia, (c) half of China's EEE transferred to India, and (d) all of China's EEE transferred to India.
Countries boxed in red/blue have statistically significant increases/decreases inmortality under the two-tailedWilcoxon signed rank test at 0.05 significance level. Totalmor-
tality rates for these countries are shown in Fig. S3.3.
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and half scenarios likely represents the importance of extremes in the PM2.5

distribution, with 100 years of simulations sometimes not being enough to
well define the country 95 % confidence intervals. Mortality rates outside
the East, South and Southeast Asian region are unaffected in the simulation.

3.3. Economic responses assessment

We estimated economic costs for individual Asian country in 2020 US
dollars ($) of attributable mortality for PM2.5 in the baseline and sensitivity
simulations by applying mortality estimates from Eq. (3.2) (Supplementary
tables 7). The economic cost for a region was based on mortality due to
PM2.5 pollution and its Willingness To Pay (WTP) to reduce mortality. In
the baseline, Chinese economic cost for the 1.66m annual deaths attributed
to PM2.5 pollution was estimated to be the highest in Asia, about $2.86 tril-
lion, followed by India ($0.77 trillion for the 0.99 m annual deaths) and
Indonesia ($0.10 trillion for the 78k annual deaths). Our estimates are in
reasonable accordance with other estimates (OECD Statistics, 2020;
9

Supplementary tables 7) for most of the regions with significant changes
in economic cost, but Bangladesh, Bhutan,Myanmar andNepal are severely
overestimated.

To evaluate the economic impact when China's export-related produc-
tion lines were transferred to India or Indonesia, we subtracted the baseline
economic cost from that in the sensitivity simulations (Fig. 6 and Supple-
mentary tables 7). As changes in economic costs attributed to PM2.5 related
mortalitywere insignificant outside Asia (Supplementary tables 7), we only
focus on the most impacted regions (East, Southeast and South Asia), to an-
alyze the potential economic impact due to manufacturing shift.

When all or half of China's export-related production lines were moved
to Indonesia (scenario All_toID and Half_toID), China had the biggest drop
in economic cost by $134.6 billion (corresponding to 0.9 % of GDP) and
$80.8 billion (corresponding to 0.6 % of GDP) respectively. South Korea
also showed significant cost decreases by $3.8 billion in All_toID and $1.7
billion in Half_toID. Indonesia saw the most significant increase in costs,
by $96.7 billion or 9.4 % of GDP in All_toID, and by $57.3 billion or 5.6



Fig. 6. The median value of 100 estimates of changes in economic cost of PM2.5 related deaths ($ billion) due to (a) half of China's Emissions Embodied in Exports (EEE)
transferred to Indonesia, (b) all of China's EEE transferred to Indonesia, (c) half of China's EEE transferred to India, and (d) all of China's EEE transferred to India. Countries
in red/blue box have statistically significant increases/decreases in economic cost under the two-tailed Wilcoxon signed rank test at 0.05 significance level.
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% of GDP in Half_toID. However, costs of other Southeast Asian countries
also showed insignificant changes when shifting manufacturing to
Indonesia. For South Asia, there would be significant cost increases in
India, Pakistan and Nepal, by $10.5 billion, $4.3 billion and $0.3 billion re-
spectively if all of production lines were transferred to Indonesia.

When all of China's export-related production lines were introduced to
India (scenario All_toIN), decreases in economic cost of East Asia were
more significant than that in Half_toIN. The biggest decreases occurred in
China, and the same as for the All_toID scenario, followed by South Korea
with cost declines by $3.4 billion. Changes in the economic costs of South
Asia are obvious both in the All_toIN and the Half_toIN simulations. Signif-
icant increases were simulated in India's annual costs by $68 billion (or
2.7 % of GDP in 2020) and $44.8 billion (or 1.8 % of GDP in 2020) in
All_toIN and Half_toIN respectively, as well as to Bangladesh ($2.2 billion
and $1.6 billion), and Nepal ($0.7 billion and $0.8 billion). The economic
cost to Pakistan increases significantly by $3.7billion in Half_IN, while
that to Sri Lanka rose significantly in All_toIN (by $0.3 billion).

Our findings indicated that transferring production lines from China to
India or Indonesia contributed to a significant decline in China's attribut-
able economic cost for PM2.5 related mortality, and a considerable increase
in India or Indonesia's cost. Although the total deaths in India (87.9k) are
more than that in Indonesia (73.7k) when transferring comparable produc-
tion, the VSL of India (0.774) is much smaller than the VSL of Indonesia
(1.312). Therefore, the economic cost to India is smaller than that to
10
Indonesia. Furthermore, economic costs of other countries were produced
as may be expected from the changed PM2.5 attributable deaths. Shifting
manufacturing to India impacts more countries than shifting to Indonesia.
But simulating half of production lines to Indonesia produced the least sig-
nificant changes.

Besides the effects on attributable economic costs for PM2.5 relatedmor-
tality, the shift of manufacturing is expected to bring considerable eco-
nomic benefits to India or Indonesia, as additional production lines can
boost local productivity and national GDP. India's CO2 emissions per GDP
is the highest, at 0.91 kg/$, follows by China and Indonesia, at 0.71 and
0.55 kg/$ respectively. In other words, given the same increase in GDP,
Indonesia emits the least CO2 while India emits the most. When all or half
of China's export-related production lines were transferred to India,
India's GDP increased by $2091 billion or $1045 billion, corresponding to
84.3 % or 42.1 % of GDP in 2020 (World Bank, 2020), which would be
much bigger than India's economic cost due to PM2.5 relatedmortality (cor-
responding to 2.7% or 1.8% of GDP). Moving all or half of production lines
to Indonesia brought an increase by $3460 billion or $1730 billion in
Indonesian GDP, which corresponded to 337 % or 168 % of GDP, far
outpacing Indonesia's economic cost (corresponding to 9.4 % or 5.6 % of
GDP). However, China's GDP declined by $2680 billion if all of export-
related production lines leave, corresponding to 18.3 % of GDP in 2020,
which was also much bigger than China's PM2.5 attributable economic
costs corresponding to 0.9 % of GDP. Cost reduction of China was smaller
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in Half_toIN than Half_toID, but they were both much smaller than reduc-
tions in China's GDP.
4. Discussion and conclusion

The COVID-19 pandemic is reshaping the global trade and supply
chains, and some developed countries may consider relocating strategic
manufacturing operations out of China, providing new opportunities for
some South and Southeast Asian countries. Since the shift of manufacturing
is accompanied by redistribution of emission sources of greenhouse gases
and aerosols, the impacts on environment and health of the countries di-
rectly involved and their neighbors, should also be considered. Since green-
house gases are well-mixed in the atmosphere, changes in their emission
sources have little impact on climate and the environment. Therefore, we
only considered changes in PM2.5 concentrations due to aerosols and their
precursors. We used the Community Earth System Model version 1.2.2 to
simulate PM2.5 and the socio-economic responses to very large shifts in eco-
nomic activity. These huge industrial changes and their associated aerosol
and their precursor emissions provide sensitivity studies rather than realis-
tic economic scenarios. In fact, it is difficult to quantify the precise changes
of emissions worldwide in the process of manufacturing shift.

Our results indicated that transferring all or half of export production
lines from China to India or Indonesia can significantly affect mortality
and economic cost attributed to PM2.5 changes, especially in China, India
and Indonesia, but also in thewider Asian region, especially in the countries
downwind of China, Indonesia and India. Shifting manufacturing to India
in our simulations led to more Asian countries showing significant changes
in PM2.5 related deaths and economic costs than an equivalent shift to
Indonesia. However, the economic costs of China, Indonesia and India
were much smaller than changes in economic benefits due to manufactur-
ing shift. This is of course not the situation for neighboring countries that
gain no economic benefit domestically, but suffer (or benefit) from the
PM2.5 transport.

In making the mortality estimates, the simple 100-year annual mean
surface PM2.5 concentrations from the climate model do not fit well to sat-
ellite observations, particularly in parts of northern China, northern India
and Indonesia, the key areas that we focused on. Since the health impacts
of PM2.5 scale are non-linearly with concentration, a correction for PM2.5

in Asia needed to be done rather than work with simple anomalies in
PM2.5 relative to the baseline.

The range of PM2.5 related mortality (Fig. 5) in this study was only de-
termined by uncertainties in the CESM-simulated PM2.5 concentrations
over the 100-year simulations (in the climate equilibrium state) of the pres-
ent, and so represents the climate model variability in weather and climate.
Although we quote 2.5 % and 97.5 % percentiles of the distribution of 100
estimates as the range ofmortality rates, there are other uncertainty sources
we do not estimate, such as uncertainties inherent in the relationship be-
tween PM2.5 exposure and the relative risk of mortality. Other models
than the IER type we chose have been used previously to evaluate the rela-
tive risk to air pollutant concentrations. Of seven different forms of
Concentration-Response functions used previously (Cohen et al., 2004;
Pope et al., 2009, 2011), Burnett et al. (2014) considered the IER model
was a superior predictor of relative risk. Maji et al. (2018) applied an IER
and also non-linear power law (NLP; Chowdhury and Dey, 2016) and log-
linear (LL; Lelieveld et al., 2013) models to assess PM2.5-related mortality
for 338 Chinese cities in 2016. China's total attributable mortality was
9.64 million (IER), 1.258 million (LL) and 0.770 million (NPL). These dif-
ferences are larger than between the sensitivity scenarios we simulated.
However, since we focus on the changes in mortality, the consistent meth-
odology should be sufficient to detect regional and country-by-country dif-
ferences in response. The model resolution for PM2.5 and population are
also the key factors that can affect the uncertainties of mortality estimates.
We interpolated the lower-resolution PM2.5 concentrations into the higher-
resolution population grid, because industrial emissions of PM2.5 are spa-
tially highly variable and closely linked to population.
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The economic cost estimates were based on the 100 estimates of PM2.5

related mortality. But there are additional uncertainties from such a mone-
tized assessment of attributable mortality for PM2.5. Country-specific em-
pirical studies on the WTP are lacking, particularly in low- and middle-
income countries (Roman et al., 2012; Giannadaki et al., 2018), and
thus increase the uncertainties in the estimation of VSL and economic
costs. Country-specific VSL in this work came from OECD Statistics
(2020) for the year 2019. However, Maji et al. (2018) criticized such
an unreasonably high estimate of economic cost in China where the
VSL was about $0.98 million USD for the year 2010 (Giannadaki et al.,
2018), they believe province-specific VSL is a better method for evalua-
tion of economic costs caused by PM2.5 related mortality in China than
country-specific VSL.

This work only considered the potential effects of redistribution of pro-
duction lines on human health and social economy, but such economic ac-
tivity may impact regional temperatures and precipitation through the
interaction of aerosols and climate, further leading to socio-economic re-
sponses. Our analysis shows that, transferring production lines from
China to Indonesia would lead to less Asian countries with significant in-
creases in PM2.5 related mortality and attributable economic cost than to
India. This is because of the maritime Indonesian setting as well as pat-
terns of surface winds. Higher wind standard deviation over the oceans
compared with the land (Fig. 1), means that winds disperse PM2.5 more
widely from Indonesia than India. In the actual manufacturing redistri-
bution, Indonesia may be a more suitable destination for manufacturing
shift compared with India, when we consider fewer negative impacts on
local and neighboring countries' air quality and attributable mortality
for PM2.5. However, since the relationship between PM2.5 exposure
and the relative risk of mortality is nonlinear, detailed simulation of
the mortality impacts including those of neighboring countries should
be included in an impact assessment of any real-world manufacturing
transfers. At present environmental impact assessments are often done
at just the local scale when deciding on infrastructure or industrial de-
velopment, but the larger picture is clearly important at both domestic
and international levels.

As local air quality of India or Indonesia will deteriorate due to the
imported production lines, the profits from manufacturing redistribution
should first be used to improve the local environment, such as upgrading
local industries, developing clean energy technology and carrying out effec-
tive environmental management policy. However, the most concerning as-
pect of this study is the damage to “innocent” victims of anymanufacturing
shifts in third countries that do not see any domestic economic gains. Mor-
ally the “polluter-pays” principle should be applied and the countries that
gain economically from any change in production should provide compen-
sation. In practice that can be done statistically, but attributing mortality
changes to specific manufacturing industry or areas will be very difficult.
The supply and demand shocks caused by COVID-19 are forcing manufac-
turers worldwide to reassess their supply chains, leading to a growing
trend of manufacturing redistribution around the world. Considering the
international transport of air pollutants, we believe the “polluter-pay” prin-
ciple can be applied in current global manufacturing distribution. This is
not a study of the health and economic impacts implied by the COVID-19
pandemic, but rather a study of the potential responses to that might be
stimulated by unexpected sudden global or regional economic events.
While this study can be seen as a purely hypothetical sensitivity study, it
is also of interest given the global redistribution of manufacturing towards
the global South.
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Data availability

The atmospheric GHGs concentrations of year 2020 come from NOAA
(available at https://gml.noaa.gov/ccgg/trends/). The air pollutant emis-
sion inventory comes from CESM1.2 and emissions input fields used to
drive the simulations are downloaded automatically during the model
building process. Model results shown in this paper are available online
(https://doi.org/10.5281/zenodo.6415030).

The satellite-derived PM2.5 for assessing model results is available at
https://sites.wustl.edu/acag/datasets/surface-pm2-5/. The global gridded
population data set is available at https://sedac.ciesin.columbia.edu/
data/set/gpw-v4-population-count-rev11. The cause-specific mortalities
for the five endpoints (GBD, 2019) are obtained from http://ghdx.
healthdata.org/gbd-results-tool. The VSL value for the individual countries
or regions is available at https://stats.oecd.org/Index.aspx?DataSetCode=
EXP_PM2_5. Carbon dioxide emissions per GDP are available at https://
www.climatewatchdata.org/ghg-emissions?calculation=PER_GDP&end_
year=2019&regions=CHN,IND,IDN&sectors=total-fossil-fuels-and-
cement&source=GCP&start_year=1960. National GDP in 2020 ($ bil-
lions, constant 2015; World Bank, 2020) is available at https://data.
worldbank.org/indicator/NY.GDP.MKTP.KD.
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